Preview

SibScript

Advanced search

RATIONALE OF DIFFERENTIAL SPLITTING SCHEMES FOR EQUATIONS OF VISCOUS COMPLRESSIBLE FLUIDS MIXTURE MOVEMENT

Abstract

We consider the differential splitting scheme on physical processes on the system one-dimensional equations viscous compressible fluid mixtures movement. Prove the convergence at the scale of Sobolev spaces in the proposed scheme of splitting. The results can be used as the basis on the construction of mathematical analysis and the corresponding finite-difference splitting scheme. In addition, proved theorem on the convergence proves the existence of a solution to the initial-boundary value problem.

About the Authors

N. A. Kucher
Kemerovo State University
Russian Federation
Nikolay A. Kucher – research advisor, Doctor of physicist-mathematical sciences, Professor at the Department of differential equations at the Faculty of mathematic


O. D. Kiseleva
Kemerovo State University
Russian Federation

Olesia D. Kiseleva – Undergraduate of Faculty of mathematics



References

1. Кучер, Н. А. Метод слабой аппроксимации и анализ схем расщепления в газовой динамике / Н. А. Кучер. – Кемерово, 1997. – 188 с.

2. Кучер, Н. А. Некоторые замечания о схемах расщепления для уравнений газовой динамики, используемых в методе «крупных частиц» / Н. А. Кучер // Вычислительные технологии. – 2006. – Т. 11. – С. 94 – 108.

3. Rajagopal, K. R. Mechanies of mixtures / K. R. Rajagopal, L. Tao. – Singapore: WorD Sci., 1995.

4. Соболев, С. Л. Избранные вопросы теории функциональных пространств и обобщенных функций / С. Л. Соболев. – М.: Наука, 1989. – 254 с.

5. Никольский, С. М. Приближенные функции многих переменных и теоремы вложения / С. М. Никольский. – М.: Наука, 1977. – 456 с.


Review

For citations:


Kucher N.A., Kiseleva O.D. RATIONALE OF DIFFERENTIAL SPLITTING SCHEMES FOR EQUATIONS OF VISCOUS COMPLRESSIBLE FLUIDS MIXTURE MOVEMENT. SibScript. 2013;(4-2):46-51. (In Russ.)

Views: 319


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)