Preview

SibScript

Advanced search

Consolidation and Reconsolidation of Auditory-Verbal Memory in Parkinson’s Disease

https://doi.org/10.21603/sibscript-2024-26-2-161-171

EDN: wgkgjj

Abstract

The paper describes the processes of consolidation and reconsolidation of auditory-verbal memory in patients diagnosed with Parkinson’s disease (G20, ICD-10) in comparison with cerebrovascular pathologies of a chronic and acute nature. The research objective was to identify the specifics of consolidation and reconsolidation of auditory-verbal memory in patients of this nosological group. The methods involved an experiment in F. Bartlett’s schema reconstruction, as well as methods of descriptive and comparative statistics. The experiment involved 104 people (67.5 ± 4.5, 21% male), including 30 patients with Parkinson’s disease (G20) (67.8 ± 4.8, 24% male), 34 patients diagnosed with sequelae of cerebral infarction (I69.3) (67.4 ± 4.4, 20% male), and 40 patients with other specified lesions of cerebral vessels on a model of chronic cerebral ischemia (CICI) (I67.8 67.6 ± 4.4, 24% male). All codes were indicated in accordance with ICD-10. The research revealed reliably significant features of consolidation and reconsolidation of auditoryverbal memory in Parkinson’s disease. The greatest number of differences belonged to the comparative analysis with the patients with chronic cerebral ischemia. This nosology was characterized by a greater number of distortion errors but few additions and sequence violations. In Parkinson’s disease, information underwent transformations already at the storing stage, which led to impairment of short-term and long-term memory. Distortion errors were more numerous than consistency errors, which casts doubt on the kinetic factor as the key one.

About the Author

Irina A. Izyumova
Pirogov Russian National Research Medical University
Russian Federation

Moscow

Scopus Author ID: 57503059500


Competing Interests:

The author declared no potential conflict of interests regarding the research, authorship, and / or publication of this article.



References

1. Aarsland D., Andersen K., Larsen J. P., Lolk A., Nielsen H., Kragh-Sørensen P. Risk of dementia in Parkinson’s disease: A community-based, prospective study. Neurology, 2001, 56(6): 730–736. https://doi.org/10.1212/wnl.56.6.730

2. Aarsland D., Batzu L., Halliday G. M., Geurtsen G. J., Ballard C., Ray Chaudhuri K., Weintraub D. Parkinson disease-associated cognitive impairment. Nature Reviews Disease Primers, 2021, 7(1). https://doi.org/10.1038/s41572-021-00280-3

3. Aarsland D., Marsh L., Schrag A. Neuropsychiatric symptoms in Parkinson’s disease. Movement Disorders, 2009, 24(15): 2175–2186. https://doi.org/10.1002/mds.22589

4. Abadie M., Camos V. False memory at short and long term. Journal of Experimental Psychology: General, 2019, 148(8): 1312–1334. https://psycnet.apa.org/doi/10.1037/xge0000526

5. Allen R. J., Atkinson A. L., Vargha-Khadem F., Baddeley A. D. Intact high-resolution working memory binding in a patient with developmental amnesia and selective hippocampal damage. Hippocampus, 2022, 32(8): 597–609. https://doi.org/10.1002/hipo.23452

6. Amorim F. E., Chapot R. L., Moulin T. C., Lee J. L. C., Amaral O. B. Memory destabilization during reconsolidation: A consequence of homeostatic plasticity? Learning & Memory, 2021, 28(10): 371–389. https://doi.org/10.1101/lm.053418.121

7. Bartlett F. C. Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press, 1932, 317.

8. Bartlett F. С. Some problems of scientific thinking. Ergonomics, 1959, 2(3): 229–238. https://doi.org/10.1080/00140135908930430

9. Forsberg A., Guitard D., Cowan N. Working memory limits severely constrain long-term retention. Psychonomic Bulletin & Review, 2021, 28(2): 537–547. https://doi.org/10.3758/s13423-020-01847-z

10. França M., Parada Lima J., Oliveira A., Rosas M. J., Vicente S. G., Sousa C. Visuospatial memory profile of patients with Parkinson's disease. Applied Neuropsychology: Adult, 2023, 11: 1–9. https://doi.org/10.1080/23279095.2023.2256918

11. Friedrich M., Mölle M., Friederici A. D., Born J. Sleep-dependent memory consolidation in infants protects new episodic memories from existing semantic memories. Nature Communications, 2020, 11(1). https://doi.org/10.1038/s41467-020-14850-8

12. Fukuda K., Vogel E. K. Visual short-term memory capacity predicts the "bandwidth" of visual long-term memory encoding. Memory & Cognition, 2019, 47(8): 1481–1497. https://doi.org/10.3758/s13421-019-00954-0

13. Giustino T. F., Maren S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Frontiers in Behavioral Neuroscience, 2015, 9(9). https://doi.org/10.3389/fnbeh.2015.00298

14. Han N.-R., Kim Y.-K., Ahn S., Hwang T.-Y., Lee H., Park H.-J. A comprehensive phenotype of non-motor impairments and distribution of alpha-synuclein deposition in Parkinsonism-induced mice by a combination injection of MPTP and probenecid. Frontiers in Aging Neuroscience, 2021, 12. https://doi.org/10.3389/fnagi.2020.599045

15. Jethani P. M., Toglia J., Foster E. R. Cognitive self-efficacy in Parkinson's disease. OTJR: Occupational Therapy Journal of Research, 2023. https://doi.org/10.1177/15394492231206346

16. Kinoshita K.-i., Tada Y., Muroi Y., Unno T., Ishii T. Selective loss of dopaminergic neurons in the substantia nigra pars compacta after systemic administration of MPTP facilitates extinction learning. Life Sciences, 2015, 137: 28–36. https://doi.org/10.1016/j.lfs.2015.07.017

17. Lee E.-Y. Memory deficits in Parkinson's disease are associated with impaired attentional filtering and memory consolidation processes. Journal of Clinical Medicine, 2023, 12(14). https://doi.org/10.3390/jcm12144594

18. Perez F., Helmer C., Foubert-Samier A., Auriacombe S., Dartigues J.-F., Tison F. Risk of dementia in an elderly population of Parkinson’s disease patients: A 15-year population-based study. Alzheimer’s & Dementia, 2012, 8(6): 463–469. https://doi.org/10.1016/j.jalz.2011.09.230

19. Singh S., Behari M. Verbal and visual memory in patients with early Parkinson’s disease: Effect of levodopa. Neurology India, 2006, 54(1): 33–37. https://doi.org/10.4103/0028-3886.24699

20. Sun C., Armstrong M. J. Treatment of Parkinson's disease with cognitive impairment: Current approaches and future directions. Behavioral Sciences, 2021, 11(4). https://doi.org/10.3390/bs11040054

21. Takehara-Nishiuchi K. Prefrontal-hippocampal interaction during the encoding of new memories. Brain and Neuroscience Advances, 2020, 4. https://doi.org/10.1177/2398212820925580

22. Twelves D., Perkins K. S. M., Counsell С. Systematic review of incidence studies of Parkinson’s disease. Movement Disorders, 2003, 18(1):19–31. https://doi.org/10.1002/mds.10305

23. Weil R. S., Costantini A. A., Schrag A. E. Mild cognitive impairment in Parkinson’s disease – What is it? Current Neurology and Neuroscience Reports, 2018, 18(4). https://doi.org/10.1007%2Fs11910-018-0823-9

24. Weintraub D., Aarsland D., Chaudhuri K. R., Dobkin R. D., Leentjens A. F., Rodriguez-Violante M., Schrag A. The neuropsychiatry of Parkinson's disease: Advances and challenges. The Lancet Neurology, 2022, 21(1): 89–102. https://doi.org/10.1016/s1474-4422(21)00330-6

25. Williams-Gray C. H., Foltynie T., Brayne C. E. G., Robbins T. W., Barker R. A. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain, 2007, 130(7): 1787–1798. https://doi.org/10.1093/brain/awm111

26. Yang Q., Antonov I., Castillejos D., Nagaraj A., Bostwick C., Kohn A., Moroz L. L., Hawkins R. D. Intermediate-term memory in Aplysia involves neurotrophin signaling, transcription, and DNA methylation. Learning & Memory, 2018, 25(12): 620–628. https://doi.org/10.1101/lm.047977.118

27. Yonelinas A. P., Ranganath C., Ekstrom A. D., Wiltgen B. J. A contextual binding theory of episodic memory: Systems consolidation reconsidered. Nature Reviews Neuroscience, 2019a, 20(6): 364–375. https://doi.org/10.1038/s41583-019-0150-4

28. Yonelinas A. P., Ranganath C., Ekstrom A. D., Wiltgen B. J. Reply to ‘Active and effective replay: Systems consolidation reconsidered againʼ. Nature Reviews Neuroscience, 2019b, 20(8): 507–508. https://doi.org/10.1038/s41583-019-0192-7


Review

For citations:


Izyumova I.A. Consolidation and Reconsolidation of Auditory-Verbal Memory in Parkinson’s Disease. SibScript. 2024;26(2):161-171. (In Russ.) https://doi.org/10.21603/sibscript-2024-26-2-161-171. EDN: wgkgjj

Views: 346


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)