Preview

SibScript

Advanced search

ISOMETRIES ON ROTO - TRANSLATION GROUP

Abstract

We describe the group of С2-smooth isometries on contact sub-Riemannian manifold, precisely on roto-translation group. We find the conditions providing for a vector field to generate the local one-parameter group of contact or local biLipschitz transformations of roto-translation group.

About the Author

Daria Vasilievna Isangulova
Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation


References

1. Capogna, L. An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem / L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson // Basel; Boston;Berlin;Birkhauser, 2007.

2. Citti, G. A cortical based model of perceptual completion in the roto-translation space / G. Citti, A. Sarti // J. Math. Imaging Vision. - 2006. - Vol. 24, no. 3. - P. 307 - 326.

3. Gromov, M. Carnot - Caratheodory spaces seen from within / M. Gromov// In: Sub-Reimannian Geometry. - Basel: Birkhauser, 1996. - P. 79 - 323.

4. Hladky, R. K. Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model / R. K. Hladky, S. D. Pauls // J. Math. Imaging Vision. - 2010. - Vol. 36, no. 1. - P. 1 - 27.

5. Koranyi, A. Quasiconformal mappings on the Heisenberg group / A. Koranyi, H. M. Reimann // Invent. math. - 1985. - Vol. 80. - P. 309 - 338.

6. Petitot, J. The neurogeometry of pinwheels as a sub-Riemannian contact structure / J. Petitot // Journal of Physiology. - Paris.: March, 2003. - Vol. 97, no. 2. - P. 265 - 309.

7. Vodopyanov, S. K. Geometry of Carnot -Caratheodory spaces and differentiability of mappings / S. K. Vodopyanov, V. I. Burenkov (ed.) et al. // The interaction of analysis and geometry. International school-conference on analysis and geometry. Novosibirsk, Russia, August 23 -September 3, 2004. - Providence, RI: American Mathematical Society. Contemporary Mathematics. - 2007. - Vol. 424. - P. 247 - 301.


Review

For citations:


Isangulova D.V. ISOMETRIES ON ROTO - TRANSLATION GROUP. The Bulletin of Kemerovo State University. 2011;(3-1):243-249. (In Russ.)

Views: 144


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)