Preview

SibScript

Advanced search

HARMONIC PRYM DIFFERENTIALS AND THEIR CLASSES PERIODS ON VARIABLE COMPACT RIEMANN SURFACE

Abstract

Harmonic Prym differentials and their periods classes play the big role in contemporary theory functions on compact Riemann surfaces. In this paper is investigated harmonic Prym bundle, whose fibre is space of harmonic Prym differentials on variable compact Riemann surfaces. Proven that cohomology Gunning bundle, which connect with periods classes, are real analytically isomorphic harmonic Prym bundle over product Teichmueller space and a space of nontrivial normalized characters.

About the Authors

Tatiana Alexeevna Pushkareva
Gorno-Altai State University
Russian Federation


Victor Vasilievich Chueshev
Kemerovo State University
Russian Federation


References

1. Appell, P. Sur les integrates de fonctions a multiplicateurs et leur application an developpement des fonctions abeliennes en series trigonometriques / P. Appell // Acta Math. - 1890. - Vol. 13: 3/4. -P. 1 - 174.

2. Чуешев, В. В. Геометрическая теория функций на компактной римановой поверхности. / В. В.Чуешев. - Кемерово: КемГУ, 2005.

3. Чуешев, В. В. Мультипликативные функ¬ции и дифференциалы Прима на переменной ком¬пактной римановой поверхности. Ч. 2. / В. В. Чуешев. - Кемерово: КемГУ, 2003.

4. Gunning, R. C. On the period classes of Prym differential / R. C. Gunning // J. Reine Angew. Math. - 1980. - Vol. 319. - P. 153 - 171.

5. Farkas, H. M. Riemann surfaces / H. M. Farkas, I. Kra // Grad. Text's Math. - Vol. 71, New-York: Springer, 1992.

6. Earle, C. J. Families of Riemann surfaces and Jacobi varieties/ C. J. Earle // Annals of Mathematics. - 1978. - Vol. 107. - P. 255 - 286.


Review

For citations:


Pushkareva T.A., Chueshev V.V. HARMONIC PRYM DIFFERENTIALS AND THEIR CLASSES PERIODS ON VARIABLE COMPACT RIEMANN SURFACE. The Bulletin of Kemerovo State University. 2011;(3-1):211-216. (In Russ.)

Views: 217


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)