Preview

SibScript

Advanced search

DIVISORS THE PRYM DIFFERENTIALS ON RIEMANN SURFACE

Abstract

The theory of multiplicative functions and Prym differentials on a compact Riemann surface has found numerous applications in function theory, analytic number theory and equations of mathematical physics [1¬4]- The work purpose - to receive new properties of meromorphic Prym differentials and abelians differentials on variable compact Riemann surfaces and variable character, in connection with divisors-

About the Author

Marina Ivanovna Golovina
Gorno-Altai State University
Russian Federation


References

1. Gunning, R. C. On the period classes of Prym differentials / R. C. Gunning // J. Reine Angew. Math. - 1980. - Vol. 319. - P. 153 - 171.

2. Farkas, H. M. Riemann surfaces / H. M. Farkas, I. Kra // Grad. Text's Math. - New-York: Springer, 1992.-Vol. 71.

3. Дубровин, Б. А. Римановы поверхности и нелинейные уравнения. Ч.1 / Б. А. Дубровин - М.: МГУ, 1986.

4. Чуешев, В. В. Мультипликативные функ¬ции и дифференциалы Прима на переменной ком¬пактной римановой поверхности. Ч.2 / В. В. Чу-ешев. - Кемерово: КемГУ, 2003.

5. Альфорс, Л. В. Пространства римановых поверхностей и квазиконформные отображения / Л. В. Альфорс, Л. Берс. - М.: ИЛ, 1961.

6. Earle, C. J. Families of Riemann surfaces and Jacobi varieties/ C. J. Earle // Annals of Mathematics. - 1978. - Vol. 107. - P. 255 - 286.


Review

For citations:


Golovina M.I. DIVISORS THE PRYM DIFFERENTIALS ON RIEMANN SURFACE. The Bulletin of Kemerovo State University. 2011;(3-1):193-199. (In Russ.)

Views: 158


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)