Preview

SibScript

Advanced search

SOME APPLICATIONS OF BINARY AND TERNARY SYSTEMS OF NUMERATION

Abstract

By means of binary and ternary number systems, the authors solve two problems: the search of finite collections of weights with any given total weight m € N (kg), in particular with minimal number of weights, such that one can weigh a load of any weight n € N П [1,m] (kg), using one-sided or two-sided placement of weights; a coordinate description of Sierpinski gasket and carpet, Menger sponge. On the ground of solution of the second problem, it is proved that restriction of the Euclidean metric to any of these three sets and inner metric, induced by this restriction, are bi-Lipschitz equivalent. It is given a direct proof of known fact that Hausdorff dimensions of all these sets coincide with their fractal dim

About the Authors

Valery Nikolaevich Berestovskii
Omsk branch of Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation


Irina Alexandrovna Zubareva
Omsk branch of Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation


References

1. Александров, П. С. Введение в теорию мно¬жеств и общую топологию / П. С. Александров. - М.: Наука, 1977. - 370 с.

2. Александров, П. С. Введение в теорию размерности. Введение в теорию топологических пространств и общую теорию размеренности / П. С. Александров, Б. А. Пасынков. - М.: Наука, 1973. - 576 с.

3. Андреев, П. Д. Размерности R-деревьев и самоподобные фрактальные пространства непо¬ложительной кривизны / П. Д. Андреев, B. Н. Бе-рестовский // Мат. труды. - 2006. - Т. 9, №2. - C. 3 - 22.

4. Морозов, А. Д. Введение в теорию фракта¬лов / А. Д. Морозов. - Москва; Ижевск: Институт компьютерных исследований, 2002. - 160 c.

5. Федерер, Г. Геометрическая теория меры / Г. Федерер. - М.: Наука, 1987. - 760 с.

6. Berestovskii, V. N. Covering R-trees, R-free groups, and dendrites / V. N. Berestovskii, C. P. Plaut // Adv. Math. - 2010. - V.224, №5. - C. 1765 - 1783.

7. Hutchinson, J. E. Fractals and self-similarity / J. E. Hutchinson // Indiana Univ. Math. J. - 1981. - V.30, №5. - P. 713 - 747.

8. Mandelbrot, B. B. The fractal geometry of nature / B. B. Mandelbrot. - San Francisco: W.H. Freeman and Company, 1982. - 497 p.

9. Stakhov, A. P. The Mathematics of Harmony: From Euclid to Contemporary Mathematics and Computer Science / A. P. Stakhov. Singapore: World Scientific, 2009. - 739 p.


Review

For citations:


Berestovskii V.N., Zubareva I.A. SOME APPLICATIONS OF BINARY AND TERNARY SYSTEMS OF NUMERATION. The Bulletin of Kemerovo State University. 2011;(3-1):106-118. (In Russ.)

Views: 183


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)