Preview

SibScript

Advanced search

REIDEMEISTER MOVES FOR KNOTS AND LINKS IN LENS SPACES

Abstract

We extend the concept of diagrams and associated Reidemeister moves for links in S3 to links in lens spaces, using a differential approach. As a particular case, we obtain diagrams and Reidemeister type moves for links in RP3 introduced by Y.V. Drobothukina.

About the Authors

Enrico Manfredi
Bologna University, Italy
Russian Federation


Michele Mulazzani
Bologna University, Italy
Russian Federation


References

1. Brody, E. J. The topological classification of the lens spaces / E. J. Brody // Ann. of Math. -1960. - Vol. 71. - P. 163 - 184.

2. Burde, G. Knots / G. Burde, H. Zieschang -Walter de Gruyter. - Berlin; New York, 2003.

3. Drobotukhina, Y. V. An analogue of the Jones polynomial for links in RP3 and a generalization of the Kauffman-Murasugi theorem / Y. V. Drobotukhina // Leningrad Math. J. - 1991. - Vol. 2. - P. 613 - 630.

4. Gonzato, M. Invarianti polinomiali per link in spazi lenticolari/ M. Gonzato // Degree thesis. -University of Bologna, 2007.

5. Manfredi, E. Fundamental group ofknots and links in lens spaces/ E. Manfredi // Degree thesis. -University of Trieste, 2010.

6. Prasolov, V. V. Knots, links, braids and 3-manifolds. An introduction to the new invariants in low-dimensional topology/ V. V. Prasolov, A. B. Sossinsky // Transl. of Math. Monographs. - Vol. 154. - Amer. Math. Soc.: Providence, RI, 1997.

7. Roseman, D. Elementary moves for higher dimensional knots / D. Roseman // Fund. Math. -2004. - Vol. 184. - P. 291 - 310.


Review

For citations:


Manfredi E., Mulazzani M. REIDEMEISTER MOVES FOR KNOTS AND LINKS IN LENS SPACES. The Bulletin of Kemerovo State University. 2011;(3-1):73-81. (In Russ.)

Views: 172


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)