REIDEMEISTER MOVES FOR KNOTS AND LINKS IN LENS SPACES
Abstract
About the Authors
Enrico ManfrediRussian Federation
Michele Mulazzani
Russian Federation
References
1. Brody, E. J. The topological classification of the lens spaces / E. J. Brody // Ann. of Math. -1960. - Vol. 71. - P. 163 - 184.
2. Burde, G. Knots / G. Burde, H. Zieschang -Walter de Gruyter. - Berlin; New York, 2003.
3. Drobotukhina, Y. V. An analogue of the Jones polynomial for links in RP3 and a generalization of the Kauffman-Murasugi theorem / Y. V. Drobotukhina // Leningrad Math. J. - 1991. - Vol. 2. - P. 613 - 630.
4. Gonzato, M. Invarianti polinomiali per link in spazi lenticolari/ M. Gonzato // Degree thesis. -University of Bologna, 2007.
5. Manfredi, E. Fundamental group ofknots and links in lens spaces/ E. Manfredi // Degree thesis. -University of Trieste, 2010.
6. Prasolov, V. V. Knots, links, braids and 3-manifolds. An introduction to the new invariants in low-dimensional topology/ V. V. Prasolov, A. B. Sossinsky // Transl. of Math. Monographs. - Vol. 154. - Amer. Math. Soc.: Providence, RI, 1997.
7. Roseman, D. Elementary moves for higher dimensional knots / D. Roseman // Fund. Math. -2004. - Vol. 184. - P. 291 - 310.
Review
For citations:
Manfredi E., Mulazzani M. REIDEMEISTER MOVES FOR KNOTS AND LINKS IN LENS SPACES. The Bulletin of Kemerovo State University. 2011;(3-1):73-81. (In Russ.)