Preview

SibScript

Advanced search

ON PRIME DECOMPOSITIONS OF KNOTS IN THICKENED SURFACES

Abstract

It is well known that any knot in S3 can be represented as a connected sum of prime summands. Moreover, the summands are determined uniquely. This is the famous theorem of H. Schubert (1949). Is a similar result true for knots in thickened surfaces, that is, in 3-manifolds of the type F х I, where F is a closed orientable surface? It turns out that the existence theorem is true but the uniqueness theorem is false (there are counterexamples). In the paper we describe the general structure ofall possible counterexamples.

About the Author

Sergey Vladimirovich Matveev
Chelyabinsk State University
Russian Federation


References

1. Schubert, H. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten / H. Schubert // S.B.-Heidelberger Akad. Wiss. Math. Natur. Kl. - 1949. -Vol. 3. - P. 57 - 104.

2. Матвеев, С. В. Разложение гомологически тривиальных узлов в F х I / С. В. Матвеев // Доклады РАН. - 2010. - Том 433, № 1. - C. 13 - 15.

3. Кораблев, Ф. Г. Редукции узлов в расши ренных поверхностях и виртуальные узлы / Ф. Г. Кораблев, С. В. Матвеев // Доклады РАН. -2011. - Том 437, No. 1. - С. 748 - 750.

4. Hog-Angeloni, C. Roots in 3-manifold topology / C. Hog-Angeloni, S. Matveev // Geometry & Topology Monographs. - 2008. - Vol. 14. - P. 295 - 319.

5. Кораблев, Ф. Г. Единственность корней уз¬лов в F х I и виртуальные узлы / Ф. Г. Кораблев // Труды ИММ. - 2011. - Том 17, №4. - C. 1 - 18.


Review

For citations:


Matveev S.V. ON PRIME DECOMPOSITIONS OF KNOTS IN THICKENED SURFACES. The Bulletin of Kemerovo State University. 2011;(3-1):67-72. (In Russ.)

Views: 156


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)