Preview

SibScript

Advanced search

PRIME DECOMPOSITIONS OF VIRTUAL KNOTS

Abstract

We prove that any virtual knot can be presented as a connected sum of several prime and trivial virtual knots. Prime summands of the presentation are defined uniquely, i.e. they are determined by the original knot. We introduce two types of reductions on the set of knots in thickened surfaces and prove that the result of any sequence of reductions exists and is defined uniquely.

About the Author

Philip Glebovich Korablev
Chelyabinsk State University
Russian Federation


References

1. Carter, J. S. Stable equivalence of knots on surfaces and virtual knot cobordisms / Carter J. S., Kamada S., Saito M. // J. Knot Theory Ramifications - 2002. - Vol. 11. - P. 311 - 322.

2. Kuperberg, G. What is a virtual link? / G. Kuperberg // Algebraic and Geometric Topology. - 2003. - Vol. 13 - P. 587 - 591.

3. Кауффман, Л. Виртуальные узлы и зацеп¬ления /Л. Кауффман, В. О. Мантуров // Труды МИРАН - 2006. - Т. 252, no 1. - С. 114 - 134.

4. Матвеев, С. В. Разложение гомологически тривиальных узлов в F х I /С. В. Матвеев// До¬клады Академии наук. - 2010. - Т. 433, no. 1. -С. 13 - 15.

5. Кораблев, Ф. Г. Редукции узлов в утолщенных поверхностях и виртуальные узлы / Ф. Г. Ко-раблев, С. В. Матвеев // Доклады Академии наук. - 2011. - Т. 437, no. 6. - С. 748 - 750.

6. Kishino, T. A note on non-classical virtual knots /T. Kishino, S. Satoh//J. of Knot Theory and Its Ramifications. - 2004. - Vol. 13, no. 7. - P. 845 - 856.

7. Matveev, S. Roots in 3-manifold topology /C. Hog-Angelony, S. Matveev// Geometry and Topology Monograph. - 2008. - Vol. 14. - P. 295¬319.

8. Miyazaki, K. Conjugation and prime decomposition of knots in closed, oriented 3-manifolds /K. Miyazaki// Trans. Amer. Math. Soc. - 1989. -Vol. 313. - P. 785 - 804.


Review

For citations:


Korablev P.G. PRIME DECOMPOSITIONS OF VIRTUAL KNOTS. The Bulletin of Kemerovo State University. 2011;(3-1):63-67. (In Russ.)

Views: 163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)