Preview

SibScript

Advanced search

GENERALIZATION OF EVERITT MANIFOLD. HEEGAARD DIAGRAMS. COMPLEXITY

Abstract

In this paper we study a class of closed orientable three-dimensional manifolds Mn(p, q) (n ^ 1, p ^ 3, 0 < q < p and (p, q) - 1) defined via pairwise identifications of the faces of fundamental polyhedra and having a cyclic symmetry. Using Heegaard diagram of Mn(p, 1), we obtain upper bounds for their Matveev complexity.

About the Author

Tatiana Anatolievna Kozlovskaya
Novosibirsk State University
Russian Federation


References

1. Веснин, А. Ю. Разветвленные циклические накрытия линзовых пространст / А. Ю. Веснин, Т. А. Козловская // Сиб. матем. журн. - 2011. - Т. 52, № 3. - С. 542 - 554.

2. Веснин, А. Ю. Точные значения сложности многообразий Паолюци-Циммермана / А. Ю. Веснин, Е. А. Фоминых // Доклады РАН. - 2011. - Т. 439, № 6. - С. 727 - 729.

3. Зейферт, Г. Топология / Г. Зейферт, В. Трельфалль - Ижевск, 2001. - 448 с.

4. Матвеев, С. В. Распознавание и табулиро¬вание трехмерных многообразий / С. В. Матвеев //Доклады РАН. - 2005. - Т. 400, № 1. - С. 26 - 28.

5. Anisov, S. Exact values of complexity for an infinite number of 3-manifolds / S. Anisov // Mosc. Math. J. - 2005. - V. 5, № 2. - С. 305 - 310.

6. Barbieri, E.Some series of honey-comb spaces / F. Barbieri, A. Cavicchioli, F. Spaggiari, // Rocky Mountain J. Math. - 2009. - Vol. 39.,№. 2. - P. 381 - 398.

7. Cavicchioli, A. Topology of compact space forms from Platonic solids. I / A. Cavicchioli, F. Spaggiari, A. Telloni // Topology Appl. - 2009. - Vol. 156. - P. 812 - 822.

8. Cavicchioli, A. Topology of compact space forms from Platonic solids. II / A. Cavicchioli, F. Spaggiari, A. Telloni // Topology Appl. - 2010. - Vol. 157. - P. 921 - 931.

9. Cristofori, P. СуеНс generalizations of two hyperbolic icosahedral manifolds / P. Cristofori, T. Kozlovskaya, A. Vesnin // Topology Appl. submitted.

10. Everitt, B. 3-manifolds from compact space forms from Platonic solids / B. Everitt // Topology Appl. - 2004. - Vol. 138. - P. 253 - 263.

11. Jaco, W. Minimal triangulations for an infinite family of lens spaces / W. Jaco, H. Rubinstein, S. Tillmann // J. Topology. - 2009. -Vol. 2., №. 1. - P. 253 - 263.

12. Jaco, W. Coverings and minimal triangulations of 3-manifolds / W. Jaco, H. Rubinstein, S. Tillmann // To appear in Algebr. Geom. Topol.- arXiv:0903.0112.

13. Mulazzani, M.The many faces of cyclic branched coverings of 2-bridge knots and links / M. Mulazzani, A. Vesnin // Atti Sem. Mat. Fis. Univ. 62 Вестник КемГУ № 3/1 2011 Геометрия трехмерных многообразий Modena. - 2001. - Vol. IL. - P. 177 - 215.

14. Mulazzani, M. Cyclic presentation of groups and cyclic branched covering of (1, 1) knots / M. Mulazzani // Bull. Korean Math. Soc. - 2003. - Vol. 40, №. 1. - P. 101 - 108.

15. Recognizer Three-manifold Recognizer, the computer program developed by members of the topology group of Chelyabinsk State University.

16. Singer, J. Three-dimensional manifolds and their Heegaard diagrams / J. Singer // Trans. Amer. Math. Soc. - 1933. - Vol. 35, №. 1. - P. 88 - 111.

17. Weber, C. Die Beiden Dodekaederaume / C. Weber, H. Seifert // Math. Z. - 1933. - Vol. 37 - P. 237 - 253.


Review

For citations:


Kozlovskaya T.A. GENERALIZATION OF EVERITT MANIFOLD. HEEGAARD DIAGRAMS. COMPLEXITY. The Bulletin of Kemerovo State University. 2011;(3-1):58-63. (In Russ.)

Views: 208


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)