ON THE STRUCTURE OF PICARD GROUP FOR MOEBIUS LADDER GRAPH AND PRISM GRAPH
Abstract
About the Authors
Madina Alexandrovna ZindinovaRussian Federation
Ilia Aleksandrovich Mednykh
Russian Federation
References
1. Cori, R. On the sandpile group of a graph / R. Cori, D. Rossin // European J. Combin. - 2000. -Vol. 21, no. 4. - P. 447 - 459.
2. Baker, M. Harmonic morphisms and hyperelliptic graphs / M. Baker, S. Norine // Int. Math. Res. Notes. -2009. - Vol.15. - P. 2914 - 2955.
3. Biggs, N. L. Chip-firing and the critical group of a graph / N. L. Biggs // J. Algebraic Combin. -1999. - Vol. 9, no. 1. - P. 25 - 45.
4. Bacher, R. The lattice of integral flows and the lattice of integral cuts on a finite graph / R. Bacher, P. de la Harpe and T. Nagnibeda // Bulletin de la Societe' Mathematique de France. - 1997. - Vol. 125. - P. 167 - 198.
5. Boesch, F. T. Spanning tree formulas and Chebyshev polynomials / F. T. Boesch, H. Prodinger // Graphs and Combinatorics. - 1986. - Vol. 2, №. 1. - P. 191 - 200.
6. Lorenzini, D. Smith normal form and laplacians / D. Lorenzini // Journal of Combinatorial Theory, Series B. - 2008. - Vol. 98, no. 6. - P. 1271 - 1300.
7. Biggs, N. L. Algebraic potential theory on graphs / N. L. Biggs // Bulletin of the London Mathematical Society. - 1997. - Vol. 29, no. 6. - P. 641 -- 82.
8. Marcus, M. A Survey of Matrix Theory and Matrix Inequalities / M. Marcus, H. Minc. - New York: Dover Publications: Mineola, 1992. - 192 pp.
Review
For citations:
Zindinova M.A., Mednykh I.A. ON THE STRUCTURE OF PICARD GROUP FOR MOEBIUS LADDER GRAPH AND PRISM GRAPH. The Bulletin of Kemerovo State University. 2011;(3-1):50-57. (In Russ.)