Preview

SibScript

Advanced search

THE INTEGRAL OPERATOR OF PROJECTION AND POINCARE SERIES FOR HOLOMORPHIC (Q; Ρ ) − FORMS

Abstract

The paper addresses the spaces of multiplicate integrable automorphic forms on the plane domain D and on the compact Riemann surface D/G; where the group G is isomorphic to Fuchsian group of the first kind. The paper investi gates the operator of projection of measurable forms onto holomorphic ones and the operator determining Poincare ρ series and translating forms for trivial group into forms for any group G. Universal estimates of norms of these opera tors; the reproduction formula; the self-conjugation and  surjection properties were received.

About the Author

O. A. Sergeeva
Kemerovo State University
Russian Federation
Olga A. Sergeeva – Candidate of Physics and Mathematics; Assistant Professor at the Department of Mathematical Analysis


References

1. Кра; И. Автоморфные формы и клейновы группы / И. Кра – М.: Мир; 1975.

2. Farcas; H. M. Riemann Surfaces / H. M. Farcas; I. Kra // Graduate Texts in Mathematics. – Vol. 71. – New York: Springer-Verlag; 1992.

3. Чуешев; В. В. Мультипликативные функции и дифференциалы Прима на переменной компактной римановой поверхности / В. В. Чуешев. – Кемерово; 2003. – Ч. 2.

4. Сергеева; О. А. Банаховы пространства мультипликативных автоморфных форм / О. А. Сергеева // Вестник НГУ. – 2005. – Т. 5. – Вып. 4.


Review

For citations:


Sergeeva O.A. THE INTEGRAL OPERATOR OF PROJECTION AND POINCARE SERIES FOR HOLOMORPHIC (Q; Ρ ) − FORMS. SibScript. 2013;(2-1):91-97. (In Russ.)

Views: 364


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)