Preview

SibScript

Advanced search

SOLVABILITY OF MULTIDIMENSIONAL EQUATIONS OF A BINARY MIXTURE BAROTROPIC STEADY FLOW

Abstract

The equations of three-dimensional steady barotropic motions of binary mixtures of viscous compressible fluids with different adiabatic constants are considered. Existence theorem for the boundary value problem that corresponds to flows in a bounded domain is proved within the class of weak solutions. Generalization of communicative property of effective viscous fluxes for mixtures is given.

About the Authors

O. V. Malyshenko
Kemerovo State University
Russian Federation
Olga V. Malyshenko – Senior Lecturer at the Department of Differential Equations


A. E. Mamontov
Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the RAS
Russian Federation
Alexander E. Mamontov – Doctor of Physics and Mathematics; Leading Researcher


D. A. Prokudin
Kemerovo State University
Russian Federation
Dmitry A. Prokudin – Candidate of Physics and Mathematics; Assistant Professor at the Department of Differential Equations


References

1. Rajagopal; K. R. Mechanics of mixtures / K. R. Rajagopal; L. Tao. – Singapore: World Scientific; 1995.

2. Нигматулин; Р. И. Динамика многофазных сред / Р. И. Нигматулин. – М.: Наука; 1987. – Ч. 1.

3. Кучер; Н. А. Анализ разрешимости краевой задачи для уравнений смесей вязких сжимаемых жидкостей / Н. А. Кучер; Д. А. Прокудин // Вестник Кемеровского государственного университета. – 2011. – Вып. 1(45).

4. Frehse; J. On a Stokes-like system for mixtures of fluids / J. Frehse; S. Goj; J. Malek // SIAM J. Math. Anal. – 2005. – V. 36(6).

5. Frehse; J. A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum / J. Frehse; S. Goj; J. Malek // J. Appl. Math. – 2005. – V. 50.

6. Frehse; J. On quasi-stationary models of mixtures of compressible fluids / J. Frehse; W. Weigant // J. Appl. Math. – 2008. – V. 53. – № 4.

7. Lions; P.-L. Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models / P.-L. Lions. – New York: Oxford University Press; 1998.

8. Feireisl; E. Dynamics of Viscous Compressible Fluids / E. Feireisl. – New York: Oxford University Press; 2003.

9. Novotny; A. Introduction to the mathematical theory of compressible flow / A. Novotny; I. Straskraba. – New York: Oxford University Press; 2004.

10. Feireisl; E. Singular limits in thermodynamics of viscous fluids / E. Feireisl; Novotny A. – Basel: Birkhauser; 2009.

11. Plotnikov; P. Compressible Navier-Stokes Equations. Theory and Shape Optimization / P. Plotnikov; J. Soko lowski. – Basel: Birkhauser; 2012.

12. Feireisl; E. On the existence of globally defined weak solutions to the Navier–Stokes equations / E. Feireisl; A. Novotny; H. Petzeltova // J. Math. Fluid Mech. – № 3. – 2001.

13. Мазья; В. Г. Пространства С. Л. Соболева / В. Г. Мазья. – Л.: ЛГУ; 1985.

14. Никольский; С. М. Приближение функций многих переменных и теоремы вложения / С. М. Никольский. – М.: Наука; 1977.

15. Гилбарг; Д. Эллиптические дифференциальные уравнения с частными производными второго порядка / Д. Гилбарг; Н. Трудингер. – М.: Наука; 1989.

16. Боговский; М. Е. О решении некоторых задач векторного анализа; связанных с операторами div и grad / М. Е. Боговский // Труды семинара С. Л. Соболева. – Т. 1. – Новосибирск: Изд. Ин-та математики СО АН СССР.


Review

For citations:


Malyshenko O.V., Mamontov A.E., Prokudin D.A. SOLVABILITY OF MULTIDIMENSIONAL EQUATIONS OF A BINARY MIXTURE BAROTROPIC STEADY FLOW. SibScript. 2013;(2-1):85-90. (In Russ.)

Views: 468


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)