Preview

SibScript

Advanced search

Activity Monitoring in the Digital Learning Environment of a Modern University: Technological Tasks of Psychological Support

https://doi.org/10.21603/2078-8975-2021-23-1-156-165

Abstract

The paper reviews the existing approaches to using digital footprints in the digital learning environment. Monitoring digital footprints of university students can help to design smart learning environment and predict models of interaction between this environment and the user. The article covers the main analysis tools that can be applied to activity monitoring in LMS Moodle, including datasets as a convenient resource for distant learning. The authors studied authentication techniques that are based not on one’s knowledge but on the confirmation of one’s digital profile. The research results revealed some personal styles and patterns of cognitive behavior that reflect students’ work in the digital learning environment. The research results can be used to develop new psychological support of activity monitoring of the digital university environment, as well as to create new effective cognitive user-friendly interfaces.

About the Authors

E. V. Bredun
Tomsk State University
Russian Federation

Ekaterina V. Bredun

Tomsk



Т. A. Vaulina
Tomsk State University
Russian Federation

Tatiana A. Vaulina

Tomsk



V. A. Shamakov
Tomsk State University
Russian Federation

Viktor A. Shamakov

Tomsk



E. A. Shcheglova
Tomsk State University
Russian Federation

Eleonora A. Shcheglova

Tomsk



References

1. Kukula E. P., Elliott S. J., Duffy V. G. The effects of human interaction on biometric system performance. Digital Human Modeling. ICDHM 2007. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2007, vol. 4561, 904–914. DOI: 10.1007/978-3-540-73321-8_102

2. Chuikov A. V., Vulfin A. M., Vasilyev V. I. Neural network system for converting the user biometric characteristics into a cryptographic key. Proceedings of TUSUR University, 2018, 21(3): 35–41. (In Russ.) DOI: 10.21293/1818-0442-2018-21-3-35-41

3. Grishko A. K., Lukin V. S., Yurkov N. K. Synthesis of test patterns for assessing the resistance of neural network transducers in biometric identification systems. Reliability & Quality of Complex Systems, 2017, (2): 32–40. (In Russ.) DOI: 10.21685/2307-4205-2017-2-5

4. Morales A., Fierrez J., Ortega-Garcia J. Towards predicting good users for biometric recognition based on keystroke dynamics. Computer Vision – ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science. Springer, Cham, 2014, vol. 8926, 711–724. DOI: 10.1007/978-3-319-16181-5_54

5. Saevanee H., Clarke N. L., Furnell S. M. Multi-modal behavioural biometric authentication for mobile devices. Information Security and Privacy Research. SEC 2012. IFIP Advances in Information and Communication Technology. Springer, Berlin, Heidelberg, 2012, vol. 376, 465–474. DOI: 10.1007/978-3-642-30436-1_38

6. Maple C., Norrington P. The usability and practicality of biometric authentication in the workplace. First International Conference on Availability, Reliability and Security (ARES06), Vienna University of Technology, 2006, 958–964. DOI: 10.1109/ARES.2006.133

7. Elbahi A., Omri M. N., Mahjoub M. A., Garrouch K. Mouse movement and probabilistic graphical models based e-learning activity recognition improvement possibilistic model. Arab. J. Sci. Eng., 2016, 41(8): 2847–2862. DOI: 10.1007/s13369-016-2025-6

8. Panasiuk P., Szymkowski M., Dąbrowski M., Saeed K. A multimodal biometric user identification system based on keystroke dynamics and mouse movements. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania, 2016, 672–681. DOI: 10.1007/978-3-319-45378-1_58

9. Pentel A. Patterns of confusion: using mouse logs to predict user’s emotional state. 5th International Workshop on Personalization Approaches in Learning Environments (PALE 2015) in conjunction with 23rd Conference on User Modelling, Adaptation and Personalization (UMAP 2015). Dublin, 2015, vol. 1388, 40–45.

10. Eltahir W. E., Salami M. J. E., Ismail A. F. Lai W. K. Design and evaluation of a pressure-based typing biometric authentication system. EURASIP Journal on Information Security, 2008. DOI: 10.1155/2008/345047

11. Starodubov K. V., Gromov Yu. Yu. Improvement of user identification by keyboard rhythm. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriia 10: Innovatsionnaia deiatelnost, 2017, 11(4): 6–10. (In Russ.) DOI: 10.15688/jvolsu10.2017.4.1

12. Motwani A., Jain R., Sondhi J. A multimodal behavioral biometric technique for user identification using mouse and keystroke dynamics. International Journal of Computer Applications, 2015, 111(8): 15–20. DOI: 10.5120/19558-1307

13. Carrillo I., Meza-Kubo V., Moran A., Galindo-Aldana G., García-Canseco E. Emotions identification to measure user experience using brain biometric signals. Human Aspects of IT for the Aged Population. Design for Aging. ITAP 2015. Lecture Notes in Computer Science. Springer, Cham, 2015, vol. 9193, 15–25. DOI: 10.1007/978-3-319-20892-3_2

14. Yin Y., Alqahtani Y., Feng J. H., Chakraborty J., McGuire M. P. Classification of eye tracking data in visual information processing tasks using convolutional neural networks and feature engineering. SN Computer Science, 2021, (2). DOI: 10.1007/s42979-020-00444-0

15. Chen X., Zou D., Xie H., Wang F. L. Past, present, and future of smart learning: a topic-based bibliometric analysis. International Journal of Educational Technology in Higher Education, 2021, (18). DOI: 10.1186/s41239-020-00239-6

16. Slade S., Prinsloo P. Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 2013, 57(10): 1510–1529. DOI: 10.1177/0002764213479366

17. Zhang S., Chang H.-H. A multilevel logistic hidden Markov model for learning under cognitive diagnosis. Behavior research methods, 2020, 52(1): 408–421. DOI: 10.3758/s13428-019-01238-w

18. Mampadi F., Chen S. Y., Ghinea G., Chen M.-P. Design of adaptive hypermedia learning systems: A cognitive style approach. Computers & Education, 2011, 56(4): 1003–1011. DOI: 10.1016/j.compedu.2010.11.018

19. Wang K. Y., Thongpapanl N., Wu H.-J., Ting I-H. Identifying structural heterogeneities between online social networks for effective word-of-mouth marketing. International Conference on Advances in Social Networks Analysis and Mining. Kaohsiung, Taiwan, 2011, 418–422. DOI: 10.1109/ASONAM.2011.24

20. Laamanen M., Ladonlahti T., Uotinen S., Okada A., Bañeres D., Koçdar S. Acceptability of the e-authentication in higher education studies: views of students with special educational needs and disabilities. International Journal of Educational Technology in Higher Education, 2021, (18). DOI: 10.1186/s41239-020-00236-9

21. Karim N. A., Shukur Z. Review of user authentication methods in online examination. Asian Journal of Information Technology, 2015, 14(5): 166–175. DOI: 10.3923/ajit.2015.166-175

22. Traore I., Nakkabi Y., Saad S., Sayed B., Ardigo J., de Faria Quinan P. M., Quinan P. Ensuring online exam integrity through continuous biometric authentication. Information Security Practices, 2017, 73–81. DOI: 10.1007/978-3-319-48947-6_6

23. Curum B., Khedo K. K. Cognitive load management in mobile learning systems: principles and theories. Journal of Computers in Education, 2021, (8): 109–136. DOI: 10.1007/s40692-020-00173-6


Review

For citations:


Bredun E.V., Vaulina Т.A., Shamakov V.A., Shcheglova E.A. Activity Monitoring in the Digital Learning Environment of a Modern University: Technological Tasks of Psychological Support. The Bulletin of Kemerovo State University. 2021;23(1):156-165. (In Russ.) https://doi.org/10.21603/2078-8975-2021-23-1-156-165

Views: 483


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)