Preview

SibScript

Advanced search

DOPING OF CARBON NANOTUBES AND GRAPHENE

Abstract

The paper presents a review of the main results of current works on the functionalization methods for carbon nanotubes and graphene, modification of their properties as a result of doping and possible use of materials based on them. The methods of covalent attachment of functional groups to graphene and carbon nanotubes, heteroatom substitution and noncovalent inclusion of nanoparticles and molecules are considered. The perspectives of the use of chemically modified carbon nanotubes and graphene in production of a new generation of electronic devices with high mechanical strength, flexibility and elasticity are shown.

About the Authors

S. D. Shandakov
Kemerovo State University
Russian Federation

Sergey D. Shandakov – Candidate of Physics and Mathematics, Associate Professor, Head of the Department of Experimental Physics



A. I. Vershinina
Kemerovo State University
Russian Federation

Anna I. Vershinina – post-graduate student at the Department of Experimental Physics



M. V. Lomakin
Kemerovo State University
Russian Federation

Maksim V. Lomakin – post-graduate student at the Department of Experimental Physics



A. V. Kosobutsky
Kemerovo State University
Russian Federation

Alexey V. Kosobutsky – Candidate of Physics and Mathematics, Senior Research Associate at the Division for Science and Research



A. G. Nasibulin
Skolkovo Institute of Science and Technology
Russian Federation

Albert G. Nasibulin – Doctor of Technical Science, Professor 



References

1. Хабашеску В. Н. Ковалентная функционализация углеродных нанотрубок: синтез, свойства и применение фторированных производных // Успехи химии. 2011. Т. 80. № 8. С. 739 – 760.

2. Chae S. H., Lee Y. H. Carbon nanotubes and grapheme towards soft Electronics // Nano Convergence. 2014. Vol. 1. № 15. P. 2 – 26.

3. Chen C., Ogino A., Wang X., Nagatsu M. Oxygen functionalization of multiwall carbon nanotubes by Ar/O2 plasma treatment // Diamond and Related Materials. 2011. Vol. 20. № 2. P. 153 – 156.

4. Chen X., Wu G., Chen J., Chen X., Xie Z., Wang X. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide // J. Am. Chem. Soc. 2011. Vol. 133. P. 3693 – 3695.

5. Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. The chemistry of graphene oxide // Chem. Soc. Rev. 2010. Vol. 39. P. 228 – 240.

6. El-Kady M. F., Strong V., Dubin S., Kaner R. B. Laser Scribing of High-Performance and Flexible GrapheneBased Electrochemical Capacitors // Science. 2012. Vol. 335. P. 1326 – 1330.

7. Fang M., Wang K., Lu H., Yang Y., Nutt S. Covalent polymer functionalization of grapheme nanosheets and mechanical properties of composites // J. Mater. Chem. – 2009. – Vol. 19. – P. 7098–71045.

8. Fang Y., Luo B., Jia Y., Li X., Wang B., Song Q., Kang F., Zhi L. Renewing functionalized graphene as electrodes for high-performance supercapacitors // Adv. Mater. 2012. Vol. 24. P. 6348 – 6355.

9. Feng C., Liu K., Wu J.-S., Liu L., Cheng J.-S., Zhang Y., Sun Y., Li Q., Fan S., Jiang K. Flexible, Stretchable, Transparent conducting films made from superaligned carbon nanotubes // Adv. Funct. Mater. 2010. Vol. 20. P. 885 – 891.

10. Gao H., Liu Z., Song L., Guo W., Gao W., Ci L., Rao A., Quan W., Vajtai R., Ajayan P. M. Synthesis of S-doped graphene by liquid precursor // Nanotechnology. 2012. Vol. 23. P. 275605-1 – 275605-7.

11. Georgiou T., Jalil R., Belle B. D., Britnell L., Gorbachev R. V., Morozov S. V., Kim Y.-J., Gholinia A., Haigh S. J., Makarovsky O., Eaves L., Ponomarenko L. A., Geim A. K., Novoselov K. S., Mishchenko A. Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics // Nat. Nanotechnol. 2013. Vol. 8. P. 100 – 113.

12. Ghosh A., Lee Y. H. Carbon-based electrochemical capacitors // ChemSusChem. 2012. Vol. 5. P. 480 – 499.

13. Glerup M., Krstić V., Ewels C., Holzinger M., Lier G. van. Doping of Carbon Nanotubes // Doped Nanomaterials and Nanodevices, edited by W. Chen. N. Y.: American Scientific Publishers, 2008. P. 169 – 242.

14. Haq A. U., Lim J., Yun J. M., Lee W. J., Han T. H., Kim S. O. Direct Growth of Polyaniline Chains from N-Doped Sites of Carbon Nanotubes // Small. 2013. Vol. 9. № 22. P. 3829 – 3833.

15. Hashim D. P., Narayanan N. T., Romo-Herrera J. M., Cullen D. A., Hahm M. G., Lezzi P., Suttle J. R., Kelkhoff D., Munoz-Sandoval E., Ganguli S., Roy A. K., Smith D. J., Vajtai R., Sumpter B. G., Meunier V., Terrones H., Terrones M., Ajayan P. M. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions // Sci. Rep. 2012. Vol. 2. P. 363-1 – 363-8.

16. Hwang S. K., Lee J. M., Kim S., Park J. S., Park H. I., Ahn C. W., Lee K. J., Lee T., Kim S. O. Flexible Multilevel Resistive Memory with Controlled Charge Trap B – and N-Doped Carbon Nanotubes // NanoLett. 2012. Vol. 12. P. 2217 – 2221.

17. Jang S., Jang H., Lee Y., Suh D., Baik S., Hong B. H., Ahn J. H. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes // Nanotechnology. 2010. Vol. 21. P. 425201.

18. Jeong H. Y., Kim J. Y., Kim J. W., Hwang J. O., Kim J. E., Lee J. Y., Yoon T. H., Cho B. J., Kim S. O., Ruoff R. S., Choi S. Y. Graphene oxide thin films for flexible nonvolatile memory applications // Nano letters. 2010. Vol. 10. P. 4381 – 4386.

19. Ji Y., Lee S., Cho B., Song S., Lee T. Flexible organic memory devices with multilayer graphene electrodes // ACS Nano. 2011. Vol. 5. P. 5995 – 6000.

20. Ju M. J., Kim J. C., Choi H.-J., Choi I. T., Kim S. G.., Lim K., Ko J., Lee J.-J., Jeon I.-Y., Baek J.-B., Kim H. K. N-doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells // ACS Nano. 2013. Vol. 7. P. 5243 – 5250.

21. Lee D. H., Lee W. J., Kim S. O. Highly Efficient Vertical Growth of Wall-Number-Selected, N-Doped Carbon Nanotube Arrays // Nano Lett. 2009. Vol. 9. P. 1427 – 1432.

22. Lee J. M., Park J. S., Lee S. H., Kim H., Yoo S., Kim S. O. Selective Electronor Hole-Transport Enhancement in Bulk-Heterojunction Organic Solar Cells with Nor B-Doped Carbon Nanotubes // Adv. Mater. 2011. Vol. 23. P. 629 – 633.

23. Lee S. W., Yabuuchi N., Gallant B. M., Chen S., Kim B.-S., Hammond P. T., Shao-Horn Y. High-power lithium batteries from functionalized carbon-nanotube electrodes // Nat. Nanotechnol. 2010. Vol. 5. P. 531 – 537.

24. Lee S.-K., Jang H. Y., Jang S., Choi E., Hong B. H., Lee J., Park S., Ahn J.-H. All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates // Nano Lett. 2012. Vol. 12. P. 3472 – 3476.

25. Lee W. J., Lee J. M., Kochuveedu S. T., Han T. H., Jeong H. Y., Park M., Yun J. M., Kwon J., No K., Kim D. H., Kim S. O. Biomineralized N-Doped CNT/TiO2 Core/Shell Nanowires for Visible Light Photocatalysis // ACS Nano. 2012. Vol. 6. P. 935 – 943.

26. Maiti U. N., Lee W. J., Lee J. M., Oh Y., Kim J. Y., Kim J. E., Shim J., Han T. H., Kim S. O. 25th Anniversary Article: Chemically Modified / Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices // Adv. Mater. 2014. Vol. 26. P. 40 – 67.

27. Marega R., Accorsi G., Meneghetti M., Parisini A., Prato M., Bonifazi D. Cap removal and shortening of doublewalled and very-thin multi-walled carbon nanotubes under mild oxidative // Carbon. 2009. Vol.47. P. 675 – 682.

28. Maune H., Bockrath M. Elastomeric carbon nanotube circuits for local strain sensing // Appl. Phys. Lett. 2006. Vol. 89. P. 173131.

29. Park S., Hu Y., Hwang J. O., Lee E.-S., Casabianca L. B., Cai W., Potts J. R., Ha H.-W., Chen S., Oh J., Kim S. O., Kim Y.-H., Ishii Y., Ruoff R. S. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping // Nat. Commun. 2012. Vol. 3. P. 638 – 641.

30. Park S. J., Kwon O. S., Lee S. H., Song H. S., Park T. H., Jang J. Ultrasensitive flexible graphene based fieldeffect transistor (FET)-type bioelectronic nose // Nanoletters. 2012. Vol. 12. P. 5082 – 5090.

31. Qu L., Liu Y., Baek J.-B., Dai L. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells // ACS Nano. 2010. Vol. 4. P. 1321 – 1326.

32. Romo-Herrera J. M., Sumpter B. G., Cullen D. A., Terrones H., Cruz-Silva E., Smith D. J., Meunier V., Terrones M. An atomistic branching mechanism for carbon nanotubes: sulfur as the triggering agent // Angew. Chem. Int. Ed. 2008. Vol. 47. P. 2948 – 2953.

33. Some S., Kim J., Lee K., Kulkarni A., Yoon Y., Lee S., Kim T., Lee H. Highly Air-Stable Phosphorus-Doped n-Type Graphene Field-Effect Transistors // Adv. Mater. – 2012. – Vol.24. – P. 5481–5486.

34. Sorgenfrei S., Chiu C.-Y., Gonzalez R. L., Yu Y.-J., Kim P., Nuckolls C., Shepard K. L. Label-free singlemolecule detection of DNA hybridization kinetics with a carbon nanotube field-effect transistor // Nat. Nanotechnol. 2011. Vol. 6. P. 126 – 132.

35. Sumpter B. G., Meunier V., Romo-Herrera J. M., Cruz-Silva E., Cullen D. A., Terrones H., Smith D. J., Terrones M. Nitrogen-mediated carbon nanotube growth: Diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation // ACS Nano. 2007. Vol. 1. P. 369 – 375.

36. Sun D. M., Liu C., Ren W. C., Cheng H. M. A review of carbon nanotubeand graphene-based flexible thin-film transistors // Small. 2013. Vol. 9. P. 1188 – 1205.

37. Sun L., Wang L., Tian C., Tan T., Xie Y., Shi K., Li M., Fu H. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage // RSC Adv. 2012. Vol. 2. P. 4498 – 4506.

38. Tian Y., Gao B., Morales V.L., Wu L., Wang Y., Munoz-Carpena R., Cao C., Huang Q., Yang L. Methods of using carbon nanotubes as filter media to remove aqueous heavy metals // Chemical Engineering Journal. 2012. Vol. 210. P. 557 – 563.

39. Wu Z.-S., Ren W., Xu L., Li F., Cheng H.-M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries // ACS Nano. 2011. Vol. 5. P. 5463 – 5471.

40. Xu J., Dong G., Jin C., Huang M., Guan L. Sulfur and Nitrogen Co-Doped, Few-Layered Graphene Oxide as a Highly Efficient Electrocatalyst for the Oxygen-Reduction Reaction // Chem Sus Chem. 2013. Vol. 6. P. 493 – 499.

41. Yan J. A., Chou M. Y. Oxidation functional groups on graphene: Structural and electronic properties // Phys. Rev. B. 2010. Vol. 82. P. 125403-1 – 125403-10.

42. Zhang J., Zou H., Qing Q., Yang Y., Li Q., Liu Z., Guo X., Du Z. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes // J. Phys. Chem. B. 2003. Vol. 107. P. 3712 – 3718.

43. Zhao B., Zhang L., Wang X., Yang J. Surface functionalization of vertically-aligned carbon nanotube forests by radio-frequency Ar/O2 plasma // Carbon. 2012. Vol. 50. P. 2710 – 2716.


Review

For citations:


Shandakov S.D., Vershinina A.I., Lomakin M.V., Kosobutsky A.V., Nasibulin A.G. DOPING OF CARBON NANOTUBES AND GRAPHENE. SibScript. 2015;(2-5):127-131. (In Russ.)

Views: 604


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)