Preview

SibScript

Advanced search

ANALYSIS OF THE STABILITY OF THE MALWARE PROPAGATION MODEL

Abstract

The paper focuses on the stability of nonlinear system of differential equations. The system simulates the process of computer virus propagation into the network. The Lyapunov methods are used for analysis. The research revealed the conditions of the stability of virus infection equilibrium. Numerical simulations are provided to support the theoretical conclusions.

About the Author

N. A. Semykina
Tver State University
Russian Federation

Natalia A. Semykina – Candidate of Physics and Mathematics, Аssociate Professor, Аssistant Professor at the Department of Computer Security and Mathematical Methods of Control



References

1. Воронцов В. В., Котенко И. В. Аналитические модели распространения сетевых червей // Труды СПИИРАН. Вып. 4. СПб.: Наука, 2007. С. 208 – 224.

2. Zhang C., Zhao Y., Wu Y. An impulse model for computer viruses // Discrete Dynamics in Nature and Society. – Vol. 2012, Article ID 260962, 2012. – URL: http://dx.doi.org/10.1155/2012/260962

3. Бесекерский В. А., Попов Е. П. Теория систем автоматического регулирования. М.: Наука, 1975.

4. Демидович Б. П. Лекции по математической теории устойчивости. СПб.: Лань, 2008.

5. Молчанов А. М. Об устойчивости нелинейных систем. Пущено: ИМПБ РАН, 2013.


Review

For citations:


Semykina N.A. ANALYSIS OF THE STABILITY OF THE MALWARE PROPAGATION MODEL. SibScript. 2014;(3-1):41-46. (In Russ.)

Views: 411


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-2122 (Print)
ISSN 2949-2092 (Online)