OPTIMIZATION OF PHYSICAL, MECHANICAL AND DEGRADATION PROPERTIES FOR BIODEGRADABLE ANTI-ADHESIVE MEMBRANES
Abstract
Biodegradation rate and tensile strength are essential for membranes, applied to prevent post-surgical adhesion formation. The study is aimed at evaluating biodegradation rate, physical and mechanical properties of the membranes made from biodegradable polymer composites in vitro, namely polyhydroxybutyrate / oxovalerate (PGBV), polylactide (PLA), and polylactide-co-glycolide (PLGA). PLGA copolymers, having a polylactide: glycolide ratio in the proportion of 70:30 and 60:40, reported the highest biodegradation rate, moreover, the addition of PGBV to this polymer composite may increase the bioresorption rate of the latter by1.2 – 1.3 times. Thus, the physical and mechanical testing findings have shown that the addition of PLGA to PGBV results in improved properties of the studied samples – PLGA added to the polymer composite in the proportion 60:40 increased its strength by 27.5 %, and its elastic properties by 70 % compared to PGBV. The obtained results demonstrated that the adjustment of the bioresorbable polymer formulation for anti-adhesive membranes may regulate biodegradation rate, physical and mechanical properties.
About the Authors
M. V. NasonovaRussian Federation
Marina V. Nasonova – Research Associate at the Laboratory of New Biomaterials
Yu. I. Hodyrevskaya
Russian Federation
Yulia I. Khodyrevskaya – Junior Research Associate at the Laboratory of New Biomaterials
A. I. Nemoykina
Russian Federation
Anna L. Nemoykina – Candidate of Biology, Head of the Laboratory of Biopolymers and Biotechnology
M. Yu. Mikhaylenko
Russian Federation
Mikhail Yu. Mikhaylenko – engineer at the Laboratory of Biopolymers and Biotechnology
Yu. A. Kudryavtseva
Russian Federation
Yuliya A. Kudryavtseva – Doctor of Biology, Head of the Laboratory of New Biomaterials
References
1. Липатов В. А. Спаечный процесс брюшной полости как типичная биологическая реакция // Сборник научных трудов, «Актуальные проблемы медицинской биологии» / под ред. Н. Н. Ильинских. Томск, 2002. С. 119 – 121.
2. Dai Z. W., Zou X. H., Chen G. Q. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an inject able implant system for prevention of post-surgical tissue adhesion. Biomaterials. 2009 Jun; 30(17):3075-83.
3. Domb A. J., Kumar N., Ezra A. Biodegradable Polymers in Clinical Use and Clinical Development Hardcover. 2011. P. 734.
4. Gentile P., Chiono V., Carmagnola I, Hatton P. V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering // Int J Mol Sci. 2014 Feb 28; 15(3):3640-59.
5. Haney A. F. Removal of surgical barriers of expanded polytetrafluoroethylene at second-look laparascopy was notassosiated with adhesion formation // fertile.Steril. 1997. 68:721-723.
6. Harris E. S., Morgan R. F., Rodeheaver G. T. Analysis of the kinetics of рeritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents // Surgery. 1995. Jun; 117(6):663-669.
7. Huang W., Shi X., Ren L., Du C., Wang Y. PHBV microspheres-PLGA matrix composite scaffold for bone tissue engineering // Biomaterials. 2010. May; 31(15):4278-85.
8. Kuppan P., Vasanthan K. S., Sundaramurthi D., Krishnan U. M., Sethuraman S. Development of poly(3hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical and chemical stimuli // Biomacromolecules. 2011. Sep. 12; 12(9):3156-65.
9. Lodge A., Wells W., Backer C. et al. A novel bioresorbable film reduces postoperative adhesions after infant cardiac surgery // The Annals Thorac. Surgery. 2008. 86(2):614– 621.
10. Pan Z., Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine // Interface Focus. 2012. Jun 6; 2(3):366-77.
11. Qu X-H., Wu Q., Chen G.-Q. In vivo study on hemocompatibility and cytocompatibility of poly(3hydroxyybutyrate-co-3-hydroxyhexaanoate) // J. Biomater Sci. Polymer Edm. 2006. 17 (10):1107-1121.
12. Rasa R. M., Janorkar A. V., Hirt D. E. Poly(lactic acid) modifications // Progress in Polymer Science. 2010. 35(3):338–356.
13. Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000. 25(10):1503–1555.
14. Wang Y., Bian Y.Z., Wu Q., Chen G.Q. Evaluation of three-dimensional scaffolds prepared from poly(3hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials. 2008. 29:2858 – 2868.
15. Webb A. R,. Yang J., Ameer G. A. Biodegradable polyester elastomers in tissue engineering // Expert Opin Biol Ther. 2004. Jun; 4(6):801-12.
16. Worldwide market for surgical sealants, glues, wound closure and anti-adhesion, 2012 – 2017 // A Worldwide Business Report from MedMarket Diligence. 2012.
17. Zhang Z, Cui H. Biodegradability and biocompatibility study of poly(chitosan-g-lactic acid) scaffolds // Molecules. 2012. Mar 14; 17(3):3243-58.
Review
For citations:
Nasonova M.V., Hodyrevskaya Yu.I., Nemoykina A.I., Mikhaylenko M.Yu., Kudryavtseva Yu.A. OPTIMIZATION OF PHYSICAL, MECHANICAL AND DEGRADATION PROPERTIES FOR BIODEGRADABLE ANTI-ADHESIVE MEMBRANES. SibScript. 2015;1(2-1):65-69. (In Russ.)