УДК 514.76

КОНТАКТНЫЕ РАСШИРЕНИЯ ЧЕТЫРЁХМЕРНЫХ ТОЧНЫХ СИМПЛЕКТИЧЕСКИХ ГРУПП ЛИ

Я. В. Славолюбова

В данной статье рассматриваются контактные алгебры Ли, построенные на основе точных симплектических алгебр Ли. Найдено семейство нормальных ассоциированных контактных метрических структур. Вычислены секционные кривизны, скалярные кривизны ассоциированных метрик и квадраты норм тензоров кривизны, Риччи и тензора кручения $N^{(1)}$.

1. Предварительные сведения. Напомним, что дифференцируемое (2n+1)-мерное многообразие Mкласса C^{∞} называется контактным, если на нем задана дифференциальная 1-форма η , такая что $\eta \wedge (d\eta)^n \neq 0$ всюду на M^{2n+1} . Форма η называется контактной формой. Контактная форма определяет на многообразии M^{2n+1} распределение $D = \{X \in TM^{2n+1} \mid \eta(X) = 0\}$ размерности 2*n*, которое называется контактным. Кроме того, контактное многообразие M^{2n+1} имеет всюду ненулевое векторное поле, обозначаемое ξ , которое определяется свойствами: $\eta(\xi) = 1$ и $d\eta(\xi,X)=0$, для всех векторных полей X на M^{2n+1} . Векторное поле ξ определяет 1-мерное распределение, дополнительное к D. Векторное поле ξ называется полем Риба или характеристическим векторным полем контактной структуры.

Если M^{2n+1} – контактное многообразие с контактной формой η , то контактной метрической структурой называется четверка (η, ξ, φ, g) , где ξ – поле Риба, g – риманова метрика и φ – аффинор на M^{2n+1} , для которой имеют место следующие свойства:

- 1) $\varphi^2 = -I + \eta \otimes \xi$,
- 2) $d\eta(X,Y) = g(\varphi X,Y)$,
- 3) $g(\varphi X, \varphi Y) = g(X, Y) \eta(X)\eta(Y)$,

где I – тождественный эндоморфизм касательного расслоения.

Риманова метрика g контактной метрической структуры называется ассоциированной. Из третьего свойства сразу следует, что ассоциированная метрика для контактной структуры η полностью определяется аффинором φ :

$$g(X,Y) = d\eta(X, \varphi Y) + \eta(X)\eta(Y). \tag{1}$$

Поэтому мы ассоциированные метрики будем задавать аффинором φ . Отметим также, что аффинор φ действует как почти комплексная структура на контактном распределении D.

Контактная метрическая структура называется структурой Сасаки, если интегрируема почти комплексная структура J, определенная формулой $J(X, fd/dt) = (\varphi X - f\xi, \eta(X)d/dt)$, где $X \in M^{2n+1}$, $t \in \mathbf{R}$, f – функция класса C^{∞} на $M^{2n+1} \times \mathbf{R}$, $J^2 = -I$.

На контактном многообразии определены четыре тензора $N^{(1)}$, $N^{(2)}$, $N^{(3)}$, $N^{(4)}$ следующими выражениями [1]:

$$N^{(1)}(X,Y) = [\varphi,\varphi](X,Y) + 2d\eta(X,Y)\xi, \quad N^{(2)}(X,Y) =$$

$$= (L_{\varphi X} \eta)(Y) - (L_{\varphi X} \eta)(X),$$

$$N^{(3)}(X,Y) = (L_{\xi} \varphi)X, \ N^{(4)}(X,Y) = (L_{\xi} \eta)(X).$$

Как известно [1], тензор $N^{(3)}$ обращается в нуль, если и только если характеристическое векторное поле ξ является киллинговым относительно метрики g.

Пусть M^{2n+1} контактное метрическое многообразие, такое что η – контактная форма и (η, ξ, φ, g) – ассоциированная почти контактная метрическая структура. Если характеристическое векторное поле ξ порождает группу изометрий, то есть ξ – векторное поле Киллинга относительно g, то такую контактную метрическую структуру называют K-контактной [1]. Контактная метрическая структура является K-контактной, если и только если $L_{\xi}\varphi = N^{(3)} = 0$ [1].

Если в качестве многообразия рассматривается группа Ли G, то естественно рассматривать левоинвариантные контактные структуры. В этом случае контактная форма η , векторное поле Риба ξ , аффинор φ и ассоциированная метрика g задаются своими значениями в единице, т. е. на алгебре Ли L(G) группы Ли G.

- **2. Методы контактизации**. Существует несколько методов построения контактной алгебры Ли из симплектической алгебры Ли. Напомним, что симплектической группой Ли (H, ω_H) называется группа Ли H с заданной на ней замкнутой невырожденной левоинвариантной 2-формой ω_H . Поскольку левоинвариантная симплектическая форма ω_H определяется своим значением в единице $\omega = \omega_H(e)$, то пара $(L(H), \omega)$ называется симплектической алгеброй Ли. Напомним два классических метода "контактизации".
- **2.1. Центральное расширение.** Этот метод дает только такие контактные группы Ли, которые имеют одномерный центр. Если имеется симплектическая алгебра Ли $(L(H), \omega)$, то можно построить центральное расширение $L(G) = L(H) \times_{\omega} \mathbf{R}$ при помощи невырожденного 2-коцикла ω . Скобки Ли задаются следующим образом:

 $[X,e_0]_{L(G)}=0,\ [X,Y]_{L(G)}=[X,Y]_{L(H)}+\omega(X,Y)e_0$ для любых $X,Y\in L(H)$ и e_0 — базисный вектор из ${\bf R}$, (мы будем иногда использовать обозначение) $e_0\in {\bf R}e_0$. В результате получается контактная алгебра Ли с центром $Z(L(G))={\bf R}e_0$ и контактной формой $\eta=-e^0$, где e^0 — ковектор, обладающий свойствами $e^0(e_0)=1$ и $e^0(L(H))=0$.

Когда пространство **R** рассматривается как векторное пространство с базисным (единичным) вектором e_0 , мы будем использовать обозначение **R** e_0 .

2.2. Контактизация на основе точных симплектических групп Ли. Можно также построить

контактные группы Ли из точных симплектических групп Ли. Напомним, что симплектическая алгебра Ли $(L(H), \omega)$ называется точной симплектической, если форма ω является дифференциалом $d\alpha = \omega$ левоинвариантной формы α . Если имеется точная симплектическая алгебра $(L(H), d\alpha)$, то на прямом произведении $L(G) = L(H) \times \mathbf{R} e_0$ в качестве контактной формы берется 1-форма

$$\eta = se^0 + \alpha$$

где $s\neq 0$ — некоторое вещественное число. Поле Риба ξ имеет вид $\xi=(1/s)e_0$.

Теорема 1. Если симплектическая алгебра Ли $(L(H), \omega)$ является точной симплектической, $\omega = d\alpha$, то контактные расширения $(L(H)\times_{\omega}\mathbf{R}, \ \eta = -e^0)$ и $(L(H)\times\mathbf{R}, \ \eta = se^0 + \alpha)$ являются изоморфными при любом значении параметра $s \neq 0$.

Доказательство. Выберем базис $(e_1, ..., e_{2n})$ в алгебре Ли L(H), в котором симплектическая форма ω имеет вид:

 $\omega=e^1\wedge e^2+\dots+e^{2n-1}\wedge e^{2n}$, $\alpha=-e^1$, где e^i – ковекторы, дуальные к e_i . Отметим, что из уравнений Маурера-Картана $de^k=-\sum_{i< j}c^k_{ij}e^i\wedge e^j$

и из условия $\omega = d\alpha$ следует, что

 $c^1_{ij}=\omega_{ij}, \quad i,j=1,\cdots,2n$, где c^k_{ij} — структурные константы алгебры Ли L(H).

Тогда в базисе $(e_0, e_1, ..., e_{2n})$ алгебры Ли $L(H) \times_{_{\! O}} \mathbf{R}$ скобки Ли имеют вид:

$$C_{i0}^k = 0$$
, $C_{ij}^0 = \omega_{ij}$, $C_{ij}^k = c_{ij}^k$, $i, j, k = 1, \dots, 2n$.

Рассмотрим теперь алгебру Ли $(L(H) \times \mathbf{R}, \eta = se^0 - e^1)$ и выберем в ней базис $(E_0, E_1, ..., E_{2n})$ следующим образом:

 $E_0 = -(1/s)e_0, \ E_1 = \ (1/s)e_0 + e_1, \ E_2 = e_2, \dots, E_{2n} = e_{2n} \ .$ Тогда очевидно, что в этом базисе ковектор $E^0,$ дуальный к E_0 , будет таким: $E^0 = -se^0 + e^1$. Это означает, что $\eta = -E^0$. Найдем скобки Ли C^k_{ij} в данном

базисе. Очевидно, что $C_{i0}^k=0, \quad i,k=1,\cdots,2n$. Для остальных скобок Ли имеем:

$$C_{ij}^{k} E_{k} = [E_{i}, E_{j}] = [e_{i}, e_{j}] = c_{ij}^{k} e_{k} = c_{ij}^{1} (E_{0} + E_{1}) + c_{ij}^{2} E_{2} + \dots + c_{ij}^{2n} E_{2n}, \quad i, j, k = 1, \square \cdot, 2n.$$

Поэтому,
$$C_{ij}^k = c_{ij}^k$$
, $i, j, k = 1, \dots, 2n$ и

 $C_{ij}^0 = c_{ij}^1 = \omega_{ij}$, $i, j = 1, \cdots, 2n$. В выбранном базисе E_i алгебры Ли $L(H) \times \mathbf{R}$ скобки Ли совпали со скобками Ли в базисе e_i алгебры Ли $L(H) \times_{\omega} \mathbf{R}$, поэтому данные алгебры изоморфны. Кроме того, контактная структура в каждом случае задается одним и тем же вектором базиса, $\eta = -e^0$ и $\eta = -E^0$.

Теорема доказана.

Отметим, что при контактном расширении $(L(H) \times \mathbf{R} e_0, \ \eta = s e^0 + \alpha)$ числовой коэффициент s можно считать равным единице s=1. Если это не так, то в качестве базисного вектора $e_0 \in \mathbf{R}$ можно взять вектор $(1/s)e_0$. Поэтому в дальнейшем будем считать, что s=1 и $\eta=e^0+\alpha$.

Пусть (H, ω) — симплектическая группа Ли. Рассмотрим прямое произведении $H \times \mathbf{R}$. Пусть $\pi: H \times \mathbf{R} \to H$ — естественная проекция.

Лемма. Левоинвариантная почти келерова структура $(L(H), \omega = d\alpha, J_H, g_H)$ на точной симплектической группе Ли $(H, \omega = d\alpha)$ однозначно определяет левоинвариантную K-контактную метрическую структуру (η, ξ, φ, g) на контактном расшрении $(L(H) \times \mathbf{R} e_0, \eta = e^0 + \alpha)$.

Доказательство. Пусть на точной симплектической группе Ли (H,ω) задана левоинвариантная почти комплексная структура J_H , обладающая свойствами: $\alpha(J_HX,J_HY)=\alpha(X,Y)$ и $g_H(X,Y)=\alpha(X,J_HY)$, для $X,Y\in L(H)$. Рассмотрим контактное расширение $(L(H)\times\mathbf{R}e_0,\ \eta=e^0+\alpha)$. Очевидно, что поле Риба есть параллельное вдоль \mathbf{R} векторное поле e_0 . Естественно возникает левоинвариантный аффинор φ , обладающий свойствами: $\varphi(\xi)=0$, контактное распределение D инвариантно относительно φ и $d\pi(\varphi(V))=J_H(d\pi(V))$ для $V\in L(H)\times\mathbf{R}e_0$. Определим левоинвариантную риманову метрику g на $H\times\mathbf{R}$, полагая, что $g(e_0)=1$, $D\perp e_0$ и

 $g(U,V) = g_H(d\pi(U),d\pi(V))$ для $U,V \in D$. Эта метрика очевидно сохраняется при сдвигах вдоль второй компоненты ${\bf R}$ прямого произведения $H \times {\bf R}$. Тогда, учитывая, что $J_H^2 = -I$ и $\omega = d\eta$, легко видеть, что выполнены все свойства для контактной метрической структуры: $\varphi^2 = -I + \eta \otimes \xi$, $d\eta(X,Y) = g(\varphi X,Y)$ и $g(\varphi X, \varphi Y) = g(X,Y) - \eta(X)\eta(Y)$. Из инвариантности метрического тензора g относительно сдвигов вдоль поля Риба e_0 , т. е. вдоль ${\bf R}$, следует K-контактность (η, ξ, φ, g) на контактном расширении $(L(H) \times {\bf R} e_0, \eta = e^0 + \alpha)$.

Теорема 2. Точная симплектическая алгебра Ли $(L(H), \omega = d\alpha)$ обладает левоинвариантной келеровой структурой $(L(H), \omega = d\alpha, J_H, g_H)$ тогда и только тогда, когда контактное расширение $(L(H) \times \mathbf{R}e_0, \eta = e^0 + \alpha)$ обладает левоинвариантной K-контактной структурой Сасаки $(\eta, \xi = e_0, \varphi, g)$.

Доказательство. Из леммы следует, что левоинвариантная почти келерова структура $(L(H), \omega = d\alpha, J_H, g_H)$ на точной симплектической группе Ли $(H, \omega = d\alpha)$ однозначно определяет левоинвариантную K-контактную метрическую структуру (η, ξ, φ, g) . Она будет структурой Сасаки, если интегрируема левоинвариантная почти комплексная структура J на группе $H \times \mathbf{R} \times \mathbf{R}$ определенная на ее алгебре Ли $L(H) \times \mathbf{R} e_0 \times \mathbf{R} e$ формулой $J(X, ae) = (\varphi X - ae_0, \eta(X)e)$, где $X \in L(H) \times \mathbf{R} e_0$ и e – базисный вектор из \mathbf{R} . При этом, если $V \in D$, $J(V) = J(V, 0) = (\varphi V, \eta(V)e) =$ $= (\varphi V, 0) = \varphi V$. Пространство $\mathbf{R} e_0 \times \mathbf{R} e$ также инвариантно относительно J и на нем J определяет стандартную комплексную структуру, $\mathbf{R} \times \mathbf{R} = \mathbf{C}$, J(e) = $= J(0, e) = (-e_0, 0) = -(e_0, J(e_0)) = J(e_0, 0) = (0, e) = e$.

Выберем базис $(e_1,...,e_{2n})$ в алгебре Ли L(H), в котором потенциал α симплектической формы ω является ковектором, дуальным к e_1 , $\alpha=e^1$. Отметим, что из уравнений Маурера-Картана

 $de^k = -\sum_{i < j} c^k_{ij} e^i \wedge e^j$ и из условия $\omega = d\alpha$ следует, что $c^1_{ij} = \omega_{ij}$, $i,j = 1,\cdots,2n$, где c^k_{ij} — структурные константы алгебры Ли L(H). Рассмотрим теперь контактную алгебру Ли $(L(H) \times \mathbf{R}, \ \eta = e^0 - e^1)$ и выберем в ней базис $(E_0, E_1, \ ..., \ E_{2n})$ так, чтобы векторы $(E_1, \ ..., \ E_{2n})$ образовывали бы базис контактного распределения и соответствовали бы базису $(e_1, \ ..., \ e_{2n})$ при проекции $\pi: H \times \mathbf{R} \to H$, а вектор E_0 совпадал бы с полем Риба:

$$E_0=-e_0,\ E_1=\ e_0+e_1,\ E_2=e_2,\ \dots,\ E_{2n}=e_{2n}$$
 . Тогда очевидно, что в этом базисе ковектор $E^0,$ дуальный к $E_0,$ будет таким: $E^0=-e^0+e^1$. Это означает, что $\eta=-E^0.$ Найдем скобки Ли C^k_{ij} в данном базисе. Очевидно, что $C^k_{i0}=0,\ i,k=1,\cdots,2n$. Для остальных скобок Ли имеем:
$$C^k_{ij}E_k=[E_i,E_j]=[e_i,e_j]=c^k_{ij}e_k=c^1_{ij}(E_0+E_1)+\\+c^2_{ij}E_2+\cdots+c^{2n}_{ij}E_{2n},\ i,j,k=1,\boxdot\cdot,2n.$$
 Поэтому, $C^k_{ij}=c^k_{ij},\,C^k_{0j}=C^k_{i0}=0,\ i,j,k=1,\cdots,2n$ и

Рассмотрим группу $H \times \mathbf{R} \times \mathbf{R}$. Базисный вектор дополнительного пространства \mathbf{R} обозначим e_{-1} . Структурные константы алгебры Ли $L(H) \times \mathbf{R} e_0 \times \mathbf{R} e_{-1}$ являются нулевыми, когда хотя бы один из индексов есть -1 и совпадают с C_{ij}^k в остальных случаях.

 $C_{ii}^0 = c_{ii}^1 = \omega_{ii}, \quad i, j = 1, \dots, 2n$.

Предположим, что почти комплексная структура J_H на группе H интегрируема, т. е. ее тензор Нейенхейса N(X,Y)=2([JX,JY]-[X,Y]-J[X,JY]-J[JX,Y]) равен нулю. Покажем интегрируемость левоинвариантной почти комплексной структуры J на группе $H \times \mathbf{R} \times \mathbf{R}$, определенной на ее алгебре Ли $L(H) \times \mathbf{R} e_0 \times \mathbf{R} e_{-1}$ формулой $J(X, ae_{-1})=(\varphi X-ae_0, \eta(X) e_{-1})$, где $X \in L(H) \times \mathbf{R} e_0$. Вычислим тензор Нейенхейса для J на всех возможных векторах из $L(H) \times \mathbf{R} e_0 \times \mathbf{R} e_{-1}$. Будем использовать то, что контактное подпространство D и пространство $\mathbf{R} e_0 \times \mathbf{R} e_{-1}$ инвариантны относительно J и то, что векторы из $\mathbf{R} e_0 \times \mathbf{R} e_{-1}$ коммутируют с векторами из D. Тогда имеем:

$$N(e_0, e_{-1}) = 2([Je_0, Je_{-1}] - [e_0, e_{-1}] -$$

$$\begin{split} &-J[e_0,Je_{-1}]-J[Je_0,e_{-1}])=0,\\ &N(e_0,V)=2([Je_0,JV]-[e_0,V]-\\ &-J[e_0,JV]-J[Je_0,V])=0, \qquad V{\in}D,\\ &N(e_{-1},V)=2([Je_{-1},JV]-[e_{-1},V]-\\ &-J[e_{-1},JV]-J[Je_{-1},V])=0, \qquad V{\in}D. \end{split}$$

Покажем, что N(U, V) = 2([JU,JV]-[U,V]-J[U,JV]-J[JU,V]) = 0 для любых $U,V\in D$, т. е. покажем, что равны нулю компоненты тензора Нейенхейса, $N_{ij}^k=0$. Поскольку $U,V\in D$, то можно считать, что $i,j=1,2,\ldots,2n$. В базисе (E_1,\ldots,E_{2n}) контактного распределения D компоненты оператора J совпадают с компонентами почти комплексной структуры J_H на L(H), кроме того, совпадают и структурные константы, поэтому $N_{ij}^k=0,i,j,k=1,\ldots,2n$. Легко также видеть, что равна нулю и компонента тензора Нейенхейса в направлении $\mathbf{R}e_{-1},\ N_{ij}^{-1}=0,i,j=1,\ldots,2n$. Осталось показать, что $N_{ij}^0=0$. Для левоинвариантной почти комплексной структуры тензор Нейенхейса легко выражается через структурные константы:

$$N^k_{ij} = 2(J^l_{\ i}J^m_{\ j}C^k_{lm} - C^k_{ij} - J^k_{\ m}J^l_{\ j}C^m_{il} - J^k_{\ m}J^l_{\ i}C^m_{lj}) \ .$$

Тогда получаем:

$$\begin{split} N^{0}_{ij}/2 &= J^{l}_{i}J^{m}_{j}C^{0}_{lm} - C^{0}_{ij} - J^{0}_{m}J^{l}_{j}C^{m}_{il} - J^{0}_{m}J^{l}_{i}C^{m}_{lj} = \\ &= J^{l}_{i}J^{m}_{j}C^{0}_{lm} - C^{0}_{ij} - J^{0}_{-1}J^{l}_{j}C^{-1}_{il} - J^{0}_{-1}J^{l}_{i}C^{-1}_{lj} = \\ &= J^{l}_{i}J^{m}_{j}C^{0}_{lm} - C^{0}_{ij} = J^{l}_{i}J^{m}_{i}\omega_{lm} - \omega_{ii} = 0 \,. \end{split}$$

Последнее равенство следует из того, что $\omega(J_HX,J_HY)=\omega(X,Y).$

Обратное утверждение очевидно, если тензор Нейенхейса для почти комплексной структуры J равен нулю, то и для почти комплексной структуры J_H на группе Ли H он также равен нулю, поскольку его компоненты совпадают с компонентами J в базисе $(E_1, ..., E_{2n})$ контактного распределения D. Теорема доказана.

В работах [6], [7] получен список четырехмерных разрешимых точных симплектических алгебр Ли.

Таблица 1

Четырехмерные разрешимые точные симплектические алгебры Ли

Случай	Скобки Ли	Потенциал
A_1^2	$[e_1, e_2] = e_2, [e_3, e_4] = e_4$	$\alpha = -e^2 - e^4$
$Aff(\mathbf{C})$	$[e_1, e_3] = e_3, [e_1, e_4] = e_4, [e_1, e_3] = e_3, [e_1, e_4] = e_4$	$\alpha = -e^3$
$L_{4,1}$	$[e_1, e_2] = e_3, [e_4, e_3] = e_3, [e_4, e_1] = e_1$	$\alpha = -e^3 - e^1$
$L_{4,\lambda}, \lambda \neq 1$	$[e_1, e_2] = e_3, [e_4, e_3] = e_3, [e_4, e_1] = \lambda e_1, [e_4, e_2] = (1 - \lambda)e_1$	$\alpha = -e^3$
$L_{4,\delta}, \delta \neq 0$	$[e_1, e_2] = e_3, [e_4, e_1] = \delta/2e_1 - e_2, [e_4, e_3] = \delta e_3, [e_4, e_2] = e_1 + \delta/2e_1$	$\alpha = -e^3$
h_4	$[e_1, e_2] = e_3, [e_4, e_3] = e_3, [e_4, e_1] = 1/2e_1, [e_4, e_2] = e_1 + 1/2e_2$	$\alpha = -e^3$

3. Контактные расширения алгебры Ли $A_1^2 =$ $= Aff(\mathbf{R}) \times Aff(\mathbf{R})$. Рассмотрим контактные структуры на двух алгебрах Ли, которые получаются из алгебры Ли $A_1^2 = Aff(\mathbf{R}) \times Aff(\mathbf{R})$ двумя методами контактизации. Хотя в результате контактизации получаются изоморфные контактные алгебры Ли, имеет смысл рассмотреть оба метода контактизации. Алгебра Ли $A_1^2 = Aff(\mathbf{R}) \times Aff(\mathbf{R})$ является разрешимой, но не нильпотентной. Первый производный идеал двумерен, центр - нулевой. Напомним, что алгебра Ли $Aff(\mathbf{R})$ группы аффинных преобразований прямой \mathbf{R}

представлена матрицами вида: $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$, $a, b \in \mathbf{R}$.

Выберем базис следующих матриц: ИЗ $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$

Тогда имеется единственное коммутационное соотношение $[e_1, e_2] = e_2$. Данная алгебра Ли является симплектической и $\omega_1 = e^1 \wedge e^2 = -de^2 = d\alpha_1$. Поэтому алгебра Ли Aff(R) является точной симплектической. Для прямого произведения $A_1^2 =$ = $Aff(\mathbf{R}) \times Aff(\mathbf{R})$ имеем соответствующий базис $e_1, e_2,$ e_3 , e_4 и коммутационные соотношения $[e_1, e_2] = e_2$ и $[e_3, e_4] = e_4$. Симплектическая форма имеет вид:

$$\omega = e^{1} \wedge e^{2} + e^{3} \wedge e^{4}, \quad \omega = d\alpha, \quad \alpha = -e^{2} - e^{4}.$$

3.1. Центральное расширение. Построим центральное расширение $A_1^2 \times_{\omega} \mathbf{R} e_5$ при помощи симплектической формы ω . Ненулевые скобки Ли на алгебре Ли $A_1^2 \times_{\omega} \mathbf{R} e_5$ определяются формулами:

$$[e_1, e_2] = e_2 + e_5$$
 и $[e_3, e_4] = e_4 + e_5$.

Алгебра Ли $A_1^2 \times_{\omega} \mathbf{R} e_5$ имеет одномерный центр ${\bf R}e_5$. В качестве контактной формы выберем 1-форму $\eta = -e^5$. Легко видеть, что $d\eta = e^1 \wedge e^2 + e^3 \wedge e^4$. Поле Риба ξ имеет вид $\xi = -e_5$. Тогда левоинвариантное контактное распределение D определяется подпространством A_1^2 в $A_1^2 \times_{\omega} \mathbf{R} e_5$. Выберем базис $E_1,..., E_5$ контактной алгебры Ли $L(A_1^2) \times_{\omega} \mathbf{R} e_5$: $E_1 = e_1$, $E_2 = e_2$, $E_3 = e_3$, $E_4 = e_4$, $E_5 = -e_5$. Скобки Ли в новом базисе.

$$[E_1, E_2] = [e_1, e_2] = e_2 + e_5 = E_2 - E_5,$$

 $[E_3, E_4] = [e_3, e_4] = e_4 + e_5 = E_4 - E_5.$

Контактная форма в новом базисе определяется 1-формой $\eta = E^5$. Ее внешний дифференциал $d\eta = E^1 \wedge E^2 + E^3 \wedge E^4.$

3.2. Расширение алгебры Ли A_1^2 как точной симплектической. Рассмотрим прямое произведение $A_1^2 \times \mathbf{R} e_5$ с контактной формой:

$$\eta = -e^2 - e^4 + se^5$$
,

где *s*≠0 – некоторое вещественное число. Легко видеть, что $d\eta_s = e^1 \wedge e^2 + e^3 \wedge e^4$. Поле Риба ξ имеет вид $\xi = (1/s)e_5$. Контактное распределение D — это левоинвариантное распределение, заданное следующим подпространством в алгебре Ли. Если $(x_1, ..., x_5)$ – координаты на L(G), соответствующие выбранному базису e_i , то $D \subset L(G)$ задается уравнением:

$$-x_2-x_4+sx_5=0.$$

Выберем базис $E_1,..., E_4, E_5$ алгебры Ли $A_1^2 \times \mathbf{R} e_5$ так, что $E_5 = \xi = (1/s)e_5$ и векторы $E_1,..., E_4$ образуют базис контактного подпространства D и выбраны следующим образом: $E_1 = e_1$, $E_3 = e_3$, $E_2 = e_2 + (1/s)e_5$, $E_4 = e_4 + (1/s)e_5$. Найдем структурные константы в новом базисе.

$$[E_1, E_2] = [e_1, e_2 + (1/s)e_5] = e_2 = E_2 - E_5,$$

 $[E_3, E_4] = [e_3, e_4 + (1/s)e_5] = e_4 = E_4 - E_5.$

Выпишем ненулевые структурные константы:

$$C_{12}^2 = 1$$
, $C_{12}^5 = -1$, $C_{34}^4 = 1$, $C_{34}^5 = -1$

 $C_{\scriptscriptstyle 12}^{\scriptscriptstyle 2}=1,\,C_{\scriptscriptstyle 12}^{\scriptscriptstyle 5}=-1,\,C_{\scriptscriptstyle 34}^{\scriptscriptstyle 4}=1,\,C_{\scriptscriptstyle 34}^{\scriptscriptstyle 5}=-1.$ Контактная форма в новом базисе определяется 1-формой $\eta = E^5$. Ее внешний дифференциал имеет вид: $d\eta = dE^5 = E^1 \wedge E^2 + E^3 \wedge E^4$.

Как известно, ассоциированная метрика д контактной метрической структуры (η, ξ, φ, g) при фиксированных η и ξ определяется аффинором φ по следующей формуле: $g(X,Y) = d\eta(X,\varphi Y) + \eta(X)\eta(Y)$. Запишем аффинор φ в общем виде в базисе $E_1,...,$ E_5 . Учитывая, что φ обладает свойством $d\eta(\varphi X, \varphi Y)$ $= = d\eta(X,Y)$, для $X,Y \in D$, легко видеть, что

$$\varphi = \begin{pmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} & \varphi_{14} & 0 \\ \varphi_{21} & -\varphi_{11} & \varphi_{41} & \varphi_{24} & 0 \\ -\varphi_{24} & \varphi_{14} & \varphi_{33} & \varphi_{34} & 0 \\ \varphi_{41} & -\varphi_{13} & \varphi_{43} & -\varphi_{33} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Теорема 3. Контактная метрическая структура (η, ξ, φ, g) на группе $A_1^2 \times \mathbf{R} e_5$ является Kконтактной при всех значениях параметров. Она является контактной метрической структурой Сасаки при следующем аффиноре:

$$\varphi = \begin{pmatrix} \varphi_{11} & \varphi_{12} & 0 & 0 & 0 \\ \frac{\varphi_{11}^2 + 1}{\varphi_{12}} & -\varphi_{11} & 0 & 0 & 0 \\ 0 & 0 & \varphi_{33} & \varphi_{34} & 0 \\ 0 & 0 & \frac{\varphi_{33}^2 + 1}{\varphi_{34}} & -\varphi_{33} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Тогда соответствующая метрика д контактной метрической структуры (η, ξ, φ, g) имеет следующую матрицу:

$$g = \begin{pmatrix} -\frac{\varphi_{11}^2 + 1}{\varphi_{12}} & -\varphi_{11} & 0 & 0 & 0\\ -\varphi_{11} & -\varphi_{12} & 0 & 0 & 0\\ 0 & 0 & -\frac{\varphi_{33}^2 + 1}{\varphi_{34}} & -\varphi_{33} & 0\\ 0 & 0 & -\varphi_{33} & -\varphi_{34} & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Квадраты норм тензоров Римана и Риччи имеют выражения:

$$\left\|Riem\right\|^2 = -6\varphi_{12} - 6\varphi_{34} + 4\varphi_{34}^2 + 4\varphi_{12}^2 + 17/2$$
 ,

 $||Ric||^2 = 2\varphi_{34}^2 + 2\varphi_{12}^2 - 2\varphi_{34} - 2\varphi_{12} + 2$. Секционные кривизны $K_{i,i}$ в направлении координатных площадок векторов базиса принимают следующие значения: $K_{12} = \varphi_{12} - 3/4$, $K_{13} = 0$, $K_{14} = 0$, $K_{23} = 0$, $K_{24} = 0$, $K_{34} = \varphi_{34} - 3/4$, $K_{12} = \varphi_{12} - 3/4$, $K_{15} = 1/4$, $K_{25} = 1/4$, $K_{35} = 1/4$, $K_{45} = 1/4$. Ckaлярная кривизна выражается формулой:

Вестник КемГУ № 4 2008 Математика

 $S=2(\varphi_{12}+\varphi_{34}-1)$. Метрика Сасаки является эйнштейновой псевдоримановой при $\varphi_{11}=\varphi_{33}=0$ и $\varphi_{12}=\varphi_{34}=3/2$.

Доказательство вытекает из Леммы и теоремы 2 с использованием прямых вычислений при помощи системы Maple.

Замечание. В классификационном списке работы [2] приведена пятимерная контактная алгебра Ли, являющаяся полупрямым произведением $A_1^2 \times_{\rho} \mathbf{R} e_5$ (18-я алгебра Ли классификационного списка), заданная в базисе e_1 , e_2 , e_3 , e_4 , e_5 коммутационными соотношениями:

 $[e_1, e_2] = e_2, [e_3, e_4] = e_4, [e_1, e_5] = pe_5, [e_3, e_5] = qe_5.$

Легко видеть, что данная алгебра Ли изоморфна рассмотренной выше алгебре Ли $A_1^2 \times \mathbf{R} e_5$, когда параметры p и q равны либо нулю, либо единице. Действительно, если $E_1=e_1,\ E_2=e_2+pe_5,\ E_3=e_3,\ E_4=e_4+pe_5,\ E_5=e_5$, то скобки Ли в новом базисе будут следующие: $[E_1,\ E_2]=e_2+p^2e_5=E_2,\ [E_3,\ E_4]=e_4+p^2e_5=E_4$. Этот случай, когда параметры p и q равны либо нулю, либо единице является общим. Это следует из результатов работы [5]. Действительно, если $p\neq 0$, то алгебра Ли $e_1,\ e_2,\ e_5$ с коммутационными соотношениями $[e_1,\ e_2]=e_2,\ [e_1,\ e_5]=pe_5$ обладает тем свойством, что для любых ее элементов x,y выполняется свойство [x,y]=l(x)y-l(y)x, где

l(x) — линейная форма на алгебре Ли. В нашем случае $l(e_1) = 1$, $l(e_2) = 0$, $l(e_5) = 0$. Поэтому p = 1.

Аналогичным образом могут быть построены контактные алгебры Ли из остальных 4-мерных алгебр Ли таблицы 1.

Литература

- Blair, D. E. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics / D. E. Blair.
 Berlin; Heidelberg; New York: Springer-Verlag, 1976.
- 2. Diatta, A. Left invariant contact structures on Lie groups// arXiv: math. DG/0403555 v2 24 Sep 2004.
- 3. Смоленцев, Н. К. Пространства римановых метрик / Н. К. Смоленцев // Современная математика и её приложения. 2003. Т. 31. С. 69 146.
- 4. Кобаяси, Ш. Основы дифференциальной геометрии / Ш. Кобаяси, К. Намидзу. М.: Наука. 1981. Т. 1, 2.
- 5. Milnor, J. Curvatures of Left Invariant Metrics on Lie Groups / J. Milor // Advances in mathematics. V. 21. 1976. P. 293 329.
- 6. Ovando, G. Complex, symplectic and Kahler structures on four dimensional Lie algebras / G. Ovando // arXiv: math.DG/ 0309146 v1, 8 Sep 2003, 15 P.
- 7. Ovando, G. Four dimensional symplectic Lie algebras / G. Ovando // arXiv: math. DG/0407501v1, 28 Jul 2004, 21 P.