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REIDEMEISTER MOVES FOR KNOTS AND LINKS IN LENS SPACES
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ПРЕОБРАЗОВАНИЯ РЕЙДЕМЕЙСТЕРА ДЛЯ УЗЛОВ И ЗАЦЕПЛЕНИЙ В
ЛИНЗОВЫХ ПРОСТРАНСТВАХ

E. Манфреди, M. Мулаццани

We extend the concept of diagrams and associated Reidemeister moves for links in S3 to links in lens
spaces, using a differential approach. As a particular case, we obtain diagrams and Reidemeister type moves
for links in RP3 introduced by Y.V. Drobothukina.

В данной работе понятия диаграммы и преобразований Рейдемейстера, известные для зацепле-
ний в S3, распространяются для зацеплений в линзовых пространствах. В частности, получены
диаграммы и преобразования типа Рейдемейстера для зацеплений в RP3, введенные ранее Ю.В. Дро-
ботухиной.
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1. Preliminaries

In this paper we work in the Diff category (of smooth
manifolds and smooth maps). Every result also holds
in the PL category, and in the Top category if we
consider only tame links.

Definition 1. Let X and Y be two smooth manifolds.
A smooth map f : X → Y is an embedding if the

differential dxf is injective for all x ∈ X and if X and
f(X) are homeomorphic. As a consequence, X and
f(X) are diffeomorphic and f(X) is a submanifold of
Y .

An ambient isotopy between two embeddings l0
and l1 from X to Y is a smooth map H : Y × [0, 1] →
Y such that, if we write at each t ∈ [0, 1], H(y, t) =
ht(y), then ht : Y → Y is a diffeomorphism, h0 = IdY

and l1 = h1 ◦ l0.

Definition 2. (Links) A link in a closed 3-manifold
M3 is an embedding of ν copies of S1 into M3, namely
it is l : S1t. . .tS1 → M3. A link can also be denoted
by L, where L = l(S1 t . . . t S1) ⊂ M3. A knot is a
link with ν = 1.

Two links L0 and L1 are equivalent if there exists
an ambient isotopy between the two embeddings l0
and l1.

Definition 3. (Lens spaces) Let p and q be two
integer numbers such that gcd(p, q) = 1 and 0 6
q < p. Consider B3 := {(x1, x2, x3) ∈ R3 | x2

1 +
x2

2 + x2
3 6 1} and let E+ and E− be respectively the

upper and the lower closed hemisphere of ∂B3. Call
B2

0 the equatorial disk, defined by the intersection
of the plane x3 = 0 with B3. Label with N and
S respectively the Тnorth poleУ (0, 0, 1) and the
Тsouth poleУ (0, 0,−1) of B3.

Let gp,q : E+ → E+ be the rotation of 2πq/p
around the x3 axis as in Figure 1, and let f3 : E+ →
E− be the reflection with respect to the plane x3 = 0.
The lens space L(p, q) is the quotient of B3 by the

equivalence relation on ∂B3 which identify x ∈ E+

with f3 ◦ gp,q(x) ∈ E−. We denote by F : B3 →
B3/ ∼ the quotient map. Notice that on the equator
∂B2

0 = E+ ∩ E− there are p points in each class of
equivalence.

Fig. 1. Representation of L(p, q)

It is easy to see that L(1, 0) ∼= S3 since g1,0 =
IdE+ . Furthermore, L(2, 1) is RP3, since we obtain the
usual model of the projective space where opposite
points of the boundary of the ball are identified.

Proposition 4. [1] The lens spaces L(p, q) and
L(p′, q′) are diffeomorphic (as well as homeomorphic)
if and only if p′ = p and q′ ≡ ±q±1mod p.

2. Links in S3

2.1. Diagrams

One of the first tools used to study links in S3 are
diagrams, that is to say, a suitable projection of the
links on a plane.

Definition 5. Let L be a link in S3 = R3 ∪ {∞}.
Since L is compact, up to an affine transformation of
R3, we can suppose that L belongs to intB3.
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Let p : B3 r {N, S} → B2
0 be the projection

defined in the following way: take x ∈ B3 r {N,S},
construct the circle (or the line) c(x) through N , x
and S and set p(x) := c(x) ∩B2

0 .
Take L ⊂ intB3 and project it using p|L : L →

B2
0 . For P ∈ p(L), p−1

|L (P ) may contain more than
one point; in this case, we say that P is a multiple
point. In particular, if it contains exactly two points,
we say that P is a double point. We can assume, by
moving L via a small isotopy, that the projection
p|L : L → B2

0 of L is regular, namely:

1. the arcs of the projection contain no cusps;

2. the arcs of the projection are not tangent to
each other;

3. the set of multiple points is finite, and all of
them are actually double points.

These requests correspond to violations
represented in Figure 2.

Fig. 2. Violations V1, V2 and V3

Now let Q be a double point and consider
p−1
|L (Q) = {P1, P2}. We suppose that P2 is nearer

to S than P1. Take U as an open neighborhood of P2

in L such that p(U) does not contain other double
points. We call U underpass. Take the complementary
set in L of all the underpasses. Every connected
component of this set (as well as its projection in
B2

0) is called overpass. The underpasses are visualized
in the projection by removing U from L′ before
projecting the link (see Figure 3). Observe that we
may have components of the link which are single
overpasses.

Fig. 3. A link in S3 and corresponding diagram

Definition 6. A diagram of a link L in S3 is a
regular projection of L on the equatorial disk B2

0 ,
with specified overpasses and underpasses.

2.2. Reidemeister moves

There are three (local) moves that allow us to
determine when two links in S3 are equivalent from

their diagrams. Reidemeister proved this theorem
for PL links. For the Diff case a good reference
is [7], where the proof involves links in arbitrary
dimensions, so it is rather complicated.

Definition 7. The Reidemeister moves on a diagram
of a link L ⊂ S3 are the moves R1, R2, R3 of Figure
4.

Fig. 4. Reidemeister moves
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Theorem 8. [7] Two links L0 and L1 in S3 are
equivalent if and only if their diagrams can be joined
by a finite sequence of Reidemeister moves R1, R2, R3

and diagram isotopies.

Proof. It is easy to see that each Reidemeister
move produces equivalent links, hence a finite
sequence of Reidemeister moves and isotopies on a
diagram does not change the equivalence class of the
link.

On the other hand, if we have two equivalent links
L0 and L1, then we have an ambient isotopy, namely:
H : S3 × [0, 1] → S3, such that l1 = h1 ◦ l0. At each
t ∈ [0, 1] we have a link Lt, defined by ht(l0). Thanks

to general position theory (see [7] for details), we can
assume that the projection of Lt is not regular only
a finite number of times, and that at each of these
times it violates only one condition.

From each type of violation a transformation of
the diagram appears, that is to say, a Reidemeister
move, as it follows (see Figure 5):

– from violation V1 we obtain move R1;
– from violation V2 we obtain move R2;
– from violation V3 we obtain move R3.

So diagrams of two equivalent links can be joined by a
finite sequence of Reidemeister moves R1, R2, R3 and
diagram isotopies.

Fig. 5. Regularity violations produce Reidemeister moves

3. Links in RP3

3.1. Diagrams

The definition given by Drobothukina [3] of diagram
for links in the projective space makes use of the
model of the projective space RP3 explained in
Section 1, as a particular case of L(p, q) with p =
2 and q = 1. Namely, consider B3 and identify
diametrically opposed points on its boundary (let ∼
be the equivalence relation), so RP3 ∼= B3/ ∼ and
the quotient map is denoted by F .

Definition 9. Let L be a link in RP3. Consider
L′ := F−1(L); by moving L via a small isotopy in
RP3, we can suppose that:

i) L′ does not meet the poles S and N of B3;

ii) L′ ∩ ∂B3 consists of a finite set of points.

So L′ is the disjoint union of closed curves in intB3

and arcs properly embedded in B3 (i.e. only the
boundary points belong to ∂B3).

Let p : B3 r {N,S} → B2
0 be the projection

defined in the following way: take x ∈ B3 r {N, S},

construct the circle (or the line) c(x) through N , x
and S and set p(x) := c(x) ∩B2

0 .
Take L′ and project it using p|L′ : L′ → B2

0 .
For P ∈ p(L′), p−1

|L′(P ) may contain more than one
point; in this case, we say that P is a multiple point.
In particular, if it contains exactly two points, we say
that P is a double point. We can assume, by moving
L via small isotopies, that the projection p(L′) is
regular, namely:

1) the arcs of the projection contain no cusps;

2) the arcs of the projection are not tangent to
each other;

3) the set of multiple points is finite, and all of
them are actually double points;

4) the arcs of the projection are not tangent to
∂B2

0 ;

5) no double point is on ∂B2
0 .

These requests correspond to violations
represented in Figures 2 and 6.
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Fig. 6. Violations V4 and V5

Now let Q be a double point and consider
p−1
|L′(Q) = {P1, P2}. We suppose that P2 is nearer

to S than P1. Take U as an open neighborhood
of P2 in L′ such that p(U) does not contain other
double points and does not meet ∂B2

0 . We call U
underpass. Take the complementary set in L′ of all
the underpasses. Every connected component of this

set (as well as its projection in B2
0) is called overpass.

The underpasses are visualized in the projection by
removing U from L′ before projecting the link (see
Figure 7).

Definition 10. A diagram of a link L in RP3 is a
regular projection of L′ = F−1(L) on the equatorial
disk B2

0 , with specified overpasses and underpasses.

Fig. 7. A link in L(2, 1) and corresponding diagram

We label the boundary points of the link
projection, in order to show the identifications.
Assume that the equator is oriented counterclockwise
if we look at it from N , and that the number of
boundary points is 2t. Choose a point of p(L′) on
the equator and call it 1 as well as the antipodal
point, then following the orientation of ∂B2

0 , label
the points of p(L′) on the equatorial circle, as well as
the antipodal ones, 2, . . . , t (see Figure 7).

3.2. Generalized Reidemeister moves

We want to look for an analogue of the Reidemeister
moves for links in S3, in order to understand when
two diagrams of links in RP3 represent equivalent
links.

Definition 11. The generalized Reidemeister moves
on a diagram of a link L ⊂ RP3 are the moves
R1, R2, R3 of Figure 4 and the moves R4, R5 of Figure
8.

Fig. 8. Generalized Reidemeister moves for projective space
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Theorem 12. [3] Two links L0 and L1 in the
the projective space are equivalent if and only if
their diagrams can be joined by a finite sequence
of generalized Reidemeister moves R1, . . . , R5 and
diagram isotopies.

Proof. It is easy to see that each Reidemeister
move produces equivalent links, hence a finite
sequence of Reidemeister moves and isotopies on a
diagram does not change the equivalence class of the
link.

On the other hand, if we have two equivalent links
L0 and L1, then we have an ambient isotopy, namely:
H : RP3 × [0, 1] → RP3, such that l1 = h1 ◦ l0. At
each t ∈ [0, 1] we have a link Lt, defined by ht(l0). As
for links in S3, using general position theory we can

assume that the projection of Lt is not regular only
a finite number of times, and that at each of these
times it violates only one condition.

From each type of violation a transformation of
the diagram appears, that is to say, a generalized
Reidemeister move, as it follows (see Figures 5 and
9).

So diagrams of two equivalent links can be joined
by a finite sequence of generalized Reidemeister
moves R1, . . . , R5 and diagram isotopies.

– from violations V1, V2 and V3 we obtain the
classic Reidemeister moves R1, R2 and R3;

– from violation V4 we obtain move R4;
– from violation V5 we obtain move R5.

Fig. 9. Regularity violations produce generalized Reidemeister moves

4. Links in L(p, q)

4.1. Diagrams

We improve the definition of diagram for links in lens
spaces given by Gonzato [4]. We can assume p > 2,
since we have already seen in the previous sections
the particular cases L(1, 0) ∼= S3 and L(2, 1) ∼= RP3.
Consider the construction of the lens space L(p, q) =
B3/ ∼ we give in the preliminaries, where F is the
quotient map.

Definition 13. Let L be a link in L(p, q). Consider
L′ := F−1(L); by moving L via a small isotopy in
L(p, q), we can suppose that:

i) L′ does not meet the poles S and N of B3;

ii) L′ ∩ ∂B3 consists of a finite set of points.

So L′ is the disjoint union of closed curves in intB3

and arcs properly embedded in B3 (i.e. only the
boundary points belong to ∂B3).

Let p : B3 r {N,S} → B2
0 be the projection

defined in the following way: take x ∈ B3 r {N, S},
construct the circle (or the line) c(x) through N , x
and S and set p(x) := c(x) ∩B2

0 .
Take L′ and project it using p|L′ : L′ → B2

0 .
For P ∈ p(L′), p−1

|L′(P ) may contain more than one
point; in this case, we say that P is a multiple point.
In particular, if it contains exactly two points, we say
that P is a double point. We can assume, by moving L

via a small isotopy, that the projection p|L′ : L′ → B2
0

of L is regular, namely:

1) the arcs of the projection contain no cusps;

2) the arcs of the projection are not tangent to
each other;

3) the set of multiple points is finite, and all of
them are actually double points;

4) the arcs of the projection are not tangent to
∂B2

0 ;

5) no double point is on ∂B2
0 ;

6) L′ ∩ ∂B2
0 = ∅.

Now let Q be a double point and consider
p−1
|L′(Q) = {P1, P2}. We suppose that P2 is nearer

to S than P1. Take U as an open neighborhood
of P2 in L′ such that p(U) does not contain other
double points and does not meet ∂B2

0 . We call U
underpass. Take the complementary set in L′ of all
the underpasses. Every connected component of this
set (as well as its projection in B2

0) is called overpass.
The underpasses are visualized in the projection by
removing U from L′ before projecting the link (see
Figure 10).

Definition 14. A diagram of a link L in L(p, q) is a
regular projection of L′ = F−1(L) on the equatorial
disk B2

0 , with specified overpasses and underpasses.
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Fig. 10. A link in L(9, 1) and corresponding diagram

We label the boundary points of the link
projection, in order to show the identifications.
Assume that the equator is oriented counterclockwise
if we look at it from N . Consider the t endpoints of
the overpasses that come from arcs of L′ that are
above the equator. Label them +1, . . . , +t according
to the orientation of ∂B2

0 . Then label the other t
points on the boundary, that come from arcs of L′

under the equator, as −1, . . . ,−t, where for each
i = 1, . . . , t, we have +i ∼ −i. An example is shown
in Figure 10.

We want to explain which diagram violations

arise from condition 1)-6). For conditions 1), 2) and
3) we already know that the corresponding violations
are V1, V2 and V3 of Figure 2.

Condition 4), as in the projective case, has
a corresponding violation V4. On the contrary,
condition 5) does not behave as in the projective
case. Indeed two diagrammatic violations arise from
it (V5 and V6), as Figure 11 shows. The difference
between the two violations is that V5 involves two
arcs of L′ that end in the same hemisphere of ∂B3,
on the contrary V6 involves arcs that end in different
hemispheres.

Fig. 11. Violations V4, V5 and V6

Finally condition 6) produces a family of
violations called V7,1, . . . ,
V7,p−1 (see Figure 12). The difference between them

is that V7,1 has the arcs of the projection identified
directly by gp,q, while V7,k has the arcs identified by
gk

p,q, for k = 2, . . . , p− 1.

Fig. 12.Violations V7,1, V7,2, . . . , V7,p−1

It is easy to see what kind of small isotopy on L
is necessary, in order to make the projection of the
link regular when we deal with violations V1, . . . , V6.
Now we explain how the link can avoid to meet ∂B2

0

up to isotopy, that is to say, avoid V7,1, . . . , V7,p−1.

We start with a link with two arcs that ends on
∂B2

0 . If we suppose that the endpoints of the arcs

are connected by gp,q, (a V7,1 violation), then we can
label the endpoints B and C, in a way such that
C = gp,q(B). In this case the required isotopy is the
one that lift up a bit the arc ending in B and lower
down the other one.

Now if we suppose that the endpoints of the arcs
are connected by a power of gp,q, (a V7,k violation
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with k > 1), then we can label the points B and
C such that C = gk

p,q(B). In this case the required
isotopy is similar to the one of the example in L(9, 1)
of Figure 13. In lens spaces with q 6= 1, the new arcs
end in the faces specified by the map f3 ◦ gp,q.

Fig. 13.Avoiding ∂B2
0 in L(9, 1)

4.2. Generalized Reidemeister moves

Again, with the aim of discovering when two
diagrams represent equivalent links in L(p, q), we
generalize Reidemeister moves for diagrams of links.

Definition 15. The generalized Reidemeister moves
on a diagram of a link L ⊂ L(p, q) are the moves
R1, R2, R3 of Figure 4 and the moves R4, R5, R6 and
R7 of Figure 14.

Fig. 14. Generalized Reidemeister moves

Theorem 16. Two links L0 and L1 in L(p, q)
are equivalent if and only if their diagrams can be
joined by a finite sequence of generalized Reidemeister
moves R1, . . . , R7 and diagram isotopies.

Proof. It is easy to see that each Reidemeister
move produces equivalent links, hence a finite
sequence of Reidemeister moves and isotopies on a
diagram does not change the equivalence class of the

link.
On the other hand, if we have two equivalent links

L0 and L1, then we have an ambient isotopy between
the two ambient spaces, namely: H : L(p, q)×[0, 1] →
L(p, q). At each t ∈ [0, 1] we have a link Lt, defined by
ht(l0). Again, as for links in S3, using general position
theory we can assume that the projection p(L′t) is not
regular only a finite number of times, and that at each
of these times it violates only one condition.
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Fig. 15. Regularity violations produce generalized Reidemeister moves

From each type of violation a transformation of
the diagram appears, that is to say, a generalized
Reidemeister move, as it follows (see Figures 5 and
15):

– from violations V1, V2 and V3 we obtain the
classic Reidemeister moves R1, R2 and R3;

– from violation V4 we obtain move R4;
– from violation V5, we obtain two different

moves, if the arcs L′ with endpoints on the
boundary are from the same side with respect
to equator, then we obtain R5, on the contrary
we obtain R6;

– for condition 6 we have a family of violation
V7,1, . . . , V7,p−1, from which we obtain the
moves R7,1, . . . , R7,p−1.

Indeed, if an arc cross the equator during the
isotopy, then we have a class of moves, R7,1 =
R7, R7,2, . . . , R7,p−1. All these moves can be seen as
the composition of R7, R6, R4 and R1 moves. More
precisely, the move R7,k with k = 2, . . . , p−1, can be
obtained by the following sequence of moves: first we
perform an R7 move on one overpass that end on the
equator and the corresponding point in a small arc,
then we repeat for k − 1 times the three moves R6-
R4-R1 necessary to retract the small arc with same
sign ending point (see an example in Figure 16).

So we can exclude R7,2, . . . , R7,p−1 from the move
set and keep only R7,1 = R7. As a consequence, any

pair of diagrams of two equivalent links can be joined
by a finite sequence of generalized Reidemeister
moves R1, . . . , R7 and diagram isotopies.
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Fig. 16. How to reduce a composite move
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