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REIDEMEISTER MOVES FOR KNOTS AND LINKS IN LENS SPACES
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We extend the concept of diagrams and associated Reidemeister moves for links in S to links in lens
spaces, using a differential approach. As a particular case, we obtain diagrams and Reidemeister type moves

for links in RP® introduced by Y.V. Drobothukina.
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1. Preliminaries

In this paper we work in the Diff category (of smooth
manifolds and smooth maps). Every result also holds
in the PL category, and in the Top category if we
consider only tame links.

Definition 1. Let X and Y be two smooth manifolds.

A smooth map f: X — Y is an embedding if the
differential d, f is injective for all z € X and if X and
f(X) are homeomorphic. As a consequence, X and
f(X) are diffeomorphic and f(X) is a submanifold of
Y.

An ambient isotopy between two embeddings [y
and [ from X to Y is a smoothmap H : Y x[0,1] —
Y such that, if we write at each t € [0,1], H(y,t) =
ht(y), then hy : Y — Y is a diffeomorphism, hg = Idy
and ll = hl @) lo.

Definition 2. (Links) A link in a closed 3-manifold
M3 is an embedding of v copies of St into M3, namely
itis?:S'U...uS' — M?3. A link can also be denoted
by L, where L = (S* U...USY) C M3. A knot is a
link with v = 1.

Two links Lg and Lq are equivalent if there exists
an ambient isotopy between the two embeddings [y
and [;.

Definition 3. (Lens spaces) Let p and ¢ be two
integer numbers such that ged(p,q) = 1 and 0 <
q < p. Consider B3 = {(x1,22,73) € R3 | 27 +
23+ 2% <1} and let Ey and E_ be respectively the
upper and the lower closed hemisphere of B3. Call
B2 the equatorial disk, defined by the intersection
of the plane z3 = 0 with B>. Label with N and
S respectively the Tnorth poleY (0,0,1) and the
Tsouth poleY (0,0, —1) of B3.

Let gpq : E4 — E4 be the rotation of 2mq/p
around the z3 axis as in Figure 1, and let f3: E, —
E_ Dbe the reflection with respect to the plane x5 = 0.
The lens space L(p,q) is the quotient of B® by the
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equivalence relation on B3 which identify x € E,
with f3 0 g, 4(z) € E_. We denote by F : B3 —
B3/ ~ the quotient map. Notice that on the equator
OBZ = E, N E_ there are p points in each class of
equivalence.

Fig. 1. Representation of L(p, q)

It is easy to see that L(1,0) = S3 since g1 =
Idp, . Furthermore, L(2, 1) is RP?, since we obtain the
usual model of the projective space where opposite
points of the boundary of the ball are identified.

Proposition 4. [1] The lens spaces L(p,q) and
L(p',q') are diffeomorphic (as well as homeomorphic)
if and only if p' = p and ¢’ = £q¢T mod p.

2. Links in S?
2.1. Diagrams

One of the first tools used to study links in S? are
diagrams, that is to say, a suitable projection of the
links on a plane.

Definition 5. Let L be a link in S? = R? U {oo}.
Since L is compact, up to an affine transformation of
R3, we can suppose that L belongs to intB3.
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Let p : B3\ {N,S} — B2 be the projection
defined in the following way: take z € B3 ~\ {N, S},
construct the circle (or the line) ¢(z) through N,
and S and set p(z) := c(x) N B3.

Take L C intB? and project it using pr:L—
B2. For P € p(L), p‘_Ll(P) may contain more than
one point; in this case, we say that P is a multiple
point. In particular, if it contains exactly two points,
we say that P is a double point. We can assume, by
moving L via a small isotopy, that the projection
pir:L— B2 of L is regular, namely:

1. the arcs of the projection contain no cusps;

2. the arcs of the projection are not tangent to

each other;

3. the set of multiple points is finite, and all of
them are actually double points.
These requests correspond to violations

represented in Figure 2.

v

5 v
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Fig. 2. Violations Vi, V5 and V3

Now let @ be a double point and consider
pl_Ll(Q) = {P, P,}. We suppose that P, is nearer
to S than P;. Take U as an open neighborhood of P,
in L such that p(U) does not contain other double
points. We call U underpass. Take the complementary
set in L of all the underpasses. Every connected
component of this set (as well as its projection in
B2) is called overpass. The underpasses are visualized
in the projection by removing U from L’ before
projecting the link (see Figure 3). Observe that we
may have components of the link which are single
overpasses.

Fig. 3. A link in S? and corresponding diagram

Definition 6. A diagram of a link L in S? is a
regular projection of L on the equatorial disk B3,
with specified overpasses and underpasses.

2.2. Reidemeister moves

There are three (local) moves that allow us to
determine when two links in S? are equivalent from

their diagrams. Reidemeister proved this theorem
for PL links. For the Diff case a good reference
is [7], where the proof involves links in arbitrary
dimensions, so it is rather complicated.

Definition 7. The Reidemeister moves on a diagram
of a link L C S? are the moves R, Ry, R3 of Figure

Fig. 4. Reidemeister moves

BN
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Theorem 8. [7| Two links Ly and Ly in S* are
equivalent if and only if their diagrams can be joined
by a finite sequence of Reidemeister moves Ry, Ra, R3
and diagram isotopies.

Proof. It is easy to see that each Reidemeister
move produces equivalent links, hence a finite
sequence of Reidemeister moves and isotopies on a
diagram does not change the equivalence class of the
link.

On the other hand, if we have two equivalent links
Ly and Ly, then we have an ambient isotopy, namely:
H :S3 % [0,1] — S3, such that I; = hy o ly. At each
t € [0,1] we have a link L;, defined by h:(lp). Thanks

to general position theory (see [7] for details), we can
assume that the projection of L; is not regular only
a finite number of times, and that at each of these
times it violates only one condition.

From each type of violation a transformation of
the diagram appears, that is to say, a Reidemeister
move, as it follows (see Figure 5):

— from violation V; we obtain move Ry;
— from violation V5 we obtain move Rs;
— from violation V3 we obtain move Rs.

So diagrams of two equivalent links can be joined by a
finite sequence of Reidemeister moves Ry, Ry, R3 and
diagram isotopies. O

Fig. 5. Regularity violations produce Reidemeister moves

3. Links in RP?
3.1. Diagrams

The definition given by Drobothukina [3] of diagram
for links in the projective space makes use of the
model of the projective space RP® explained in
Section 1, as a particular case of L(p,q) with p =
2 and ¢ = 1. Namely, consider B? and identify
diametrically opposed points on its boundary (let ~
be the equivalence relation), so RP* = B3/ ~ and
the quotient map is denoted by F.

Definition 9. Let L be a link in RP®. Consider
L' :== F~Y(L); by moving L via a small isotopy in
RP?, we can suppose that:

i) L’ does not meet the poles S and N of B3;
ii) L' N dB? consists of a finite set of points.

So L’ is the disjoint union of closed curves in intB3
and arcs properly embedded in B3 (i.e. only the
boundary points belong to 9B?).

Let p : B3~ {N,S} — B2 be the projection
defined in the following way: take z € B® \ {N, S},

(0]

construct the circle (or the line) ¢(x) through N, x
and S and set p(x) := c(x) N BE.

Take L' and project it using pjz/ : L' — B2.
For P € p(L'), p‘_Ll, (P) may contain more than one
point; in this case, we say that P is a multiple point.
In particular, if it contains exactly two points, we say
that P is a double point. We can assume, by moving
L via small isotopies, that the projection p(L’) is
regular, namely:

1) the arcs of the projection contain no cusps;

2) the arcs of the projection are not tangent to
each other;

3) the set of multiple points is finite, and all of
them are actually double points;

4) the arcs of the projection are not tangent to
OBg;
5) no double point is on OBZ.

These requests correspond to violations

represented in Figures 2 and 6.



’[ Becrnuk KemI'yY

[ Ne 3/1 [ 2011 [ leomerpust TpexMepHBIX MHOr00Opa3mii H

V J

=

V5.

Fig. 6. Violations V; and Vj

Now let Q be a double point and consider
pﬁ%(Q) = {P, P,}. We suppose that P, is nearer
to S than P;. Take U as an open neighborhood
of P, in L' such that p(U) does not contain other
double points and does not meet 9BZ. We call U
underpass. Take the complementary set in L’ of all

the underpasses. Every connected component of this

S

set (as well as its projection in B?) is called overpass.
The underpasses are visualized in the projection by
removing U from L’ before projecting the link (see
Figure 7).

Definition 10. A diagram of a link L in RP? is a
regular projection of L’ = F~!(L) on the equatorial
disk B2, with specified overpasses and underpasses.

2
. 1
1 2

Fig. 7. A link in L(2,1) and corresponding diagram

We label the boundary points of the link
projection, in order to show the identifications.
Assume that the equator is oriented counterclockwise
if we look at it from N, and that the number of
boundary points is 2¢. Choose a point of p(L’) on
the equator and call it 1 as well as the antipodal
point, then following the orientation of dBZ, label
the points of p(L’) on the equatorial circle, as well as
the antipodal ones, 2, ...t (see Figure 7).

3.2. Generalized Reidemeister moves

We want to look for an analogue of the Reidemeister
moves for links in S3, in order to understand when
two diagrams of links in RP? represent equivalent
links.

Definition 11. The generalized Reidemeister moves
on a diagram of a link L C RP? are the moves
Ry, Ry, R3 of Figure 4 and the moves Ry, R5 of Figure

Fig. 8. Generalized Reidemeister moves for projective space
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Theorem 12. [3] Two links Ly and Ly in the
the projective space are equivalent if and only if
their diagrams can be joined by a finite sequence
of generalized Reidemeister moves Ry,...,Rs and
diagram isotopies.

Proof. 1t is easy to see that each Reidemeister
move produces equivalent links, hence a finite
sequence of Reidemeister moves and isotopies on a
diagram does not change the equivalence class of the
link.

On the other hand, if we have two equivalent links
Ly and Ly, then we have an ambient isotopy, namely:
H : RP? x [0,1] — RP?, such that I; = hy oly. At
each t € [0,1] we have a link L;, defined by h:(ly). As
for links in S3, using general position theory we can

\Y
5

assume that the projection of L; is not regular only
a finite number of times, and that at each of these
times it violates only one condition.

From each type of violation a transformation of
the diagram appears, that is to say, a generalized
Reidemeister move, as it follows (see Figures 5 and
9).

So diagrams of two equivalent links can be joined
by a finite sequence of generalized Reidemeister
moves Rq,..., Rs and diagram isotopies. O

— from violations Vi, V5 and V3 we obtain the
classic Reidemeister moves R;, Rs and Rs;

— from violation V; we obtain move Ry;

— from violation V5 we obtain move Rs.

Fig. 9. Regularity violations produce generalized Reidemeister moves

4. Links in L(p,q)
4.1. Diagrams

We improve the definition of diagram for links in lens
spaces given by Gonzato [4]. We can assume p > 2,
since we have already seen in the previous sections
the particular cases L(1,0) = S% and L(2,1) = RP.
Consider the construction of the lens space L(p, q) =
B3/ ~ we give in the preliminaries, where F is the
quotient map.

Definition 13. Let L be a link in L(p, ¢). Consider
L' := F~!(L); by moving L via a small isotopy in
L(p, q), we can suppose that:

i) L' does not meet the poles S and N of B?;
ii) L' N dB3 consists of a finite set of points.

So L' is the disjoint union of closed curves in intB>
and arcs properly embedded in B3 (i.e. only the
boundary points belong to dB?).

Let p : B3\ {N,S} — B2 be the projection
defined in the following way: take z € B® ~ {N, S},
construct the circle (or the line) ¢(z) through N, x
and S and set p(x) := c(x) N BE.

Take L' and project it using pj; : L' — Bj.
For P € p(L'), p‘f, (P) may contain more than one
point; in this case, we say that P is a multiple point.
In particular, if it contains exactly two points, we say
that P is a double point. We can assume, by moving L

via a small isotopy, that the projection pjz- : L' — B2
of L is reqular, namely:

1) the arcs of the projection contain no cusps;

2) the arcs of the projection are not tangent to
each other;

3) the set of multiple points is finite, and all of
them are actually double points;

4) the arcs of the projection are not tangent to
0Bg;

5) no double point is on dB3;
6) L' NoB: = 0.

Now let Q be a double point and consider
prl,(Q) = {P, P,}. We suppose that P, is nearer
to S than P;. Take U as an open neighborhood
of Py in L' such that p(U) does not contain other
double points and does not meet 9BZ. We call U
underpass. Take the complementary set in L’ of all
the underpasses. Every connected component of this
set (as well as its projection in B2) is called overpass.
The underpasses are visualized in the projection by
removing U from L’ before projecting the link (see
Figure 10).

Definition 14. A diagram of a link L in L(p,q) is a
regular projection of L' = F~1(L) on the equatorial
disk B2, with specified overpasses and underpasses.

(s
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We label the boundary points of the link
projection, in order to show the identifications.
Assume that the equator is oriented counterclockwise
if we look at it from N. Consider the ¢ endpoints of
the overpasses that come from arcs of L’ that are
above the equator. Label them +1,..., 4+t according
to the orientation of dB2. Then label the other ¢
points on the boundary, that come from arcs of L'
under the equator, as —1,...,—t, where for each
i=1,...,t, we have +i ~ —i. An example is shown
in Figure 10.

We want to explain which diagram violations

A Vs

-3 +4
Fig. 10. A link in L(9,1) and corresponding diagram

arise from condition 1)-6). For conditions 1), 2) and
3) we already know that the corresponding violations
are V1, V5 and V3 of Figure 2.

Condition 4), as in the projective case, has
a corresponding violation V. On the contrary,
condition 5) does not behave as in the projective
case. Indeed two diagrammatic violations arise from
it (Vs and Vg), as Figure 11 shows. The difference
between the two violations is that Vg involves two
arcs of L' that end in the same hemisphere of B3,
on the contrary Vg involves arcs that end in different
hemispheres.

Ve

Fig. 11. Violations Vy, V5 and Vg

Finally condition 6)
violations called V7 1,...,
Vi p—1 (see Figure 12). The difference between them

produces a family of

Fig. 12.Violations V7 1, V72,..

It is easy to see what kind of small isotopy on L
is necessary, in order to make the projection of the
link regular when we deal with violations Vi,..., Vs.
Now we explain how the link can avoid to meet 0B
up to isotopy, that is to say, avoid V7 1,..., V7 p—1.

We start with a link with two arcs that ends on
OBZ. If we suppose that the endpoints of the arcs

78

is that V71 has the arcs of the projection identified
directly by g¢p,4, while V7 has the arcs identified by
g?’;’q7 fork=2,...,p—1.

p-1
&,

Tipel ¥

L) V7,p—1

are connected by g 4, (a V7,1 violation), then we can
label the endpoints B and C, in a way such that
C' = gp,¢(B). In this case the required isotopy is the
one that lift up a bit the arc ending in B and lower
down the other one.

Now if we suppose that the endpoints of the arcs
are connected by a power of g, 4, (a V7 violation
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with & > 1), then we can label the points B and
C such that C = gzlf,q(B). In this case the required

-

isotopy is similar to the one of the example in L(9,1)
of Figure 13. In lens spaces with ¢ # 1, the new arcs
end in the faces specified by the map f3 0 gy 4.

)
-

Fig. 13.Avoiding dB2 in L(9,1)

4.2. Generalized Reidemeister moves

Again, with the aim of discovering when two
diagrams represent equivalent links in L(p,q), we
generalize Reidemeister moves for diagrams of links.

-1
-2/

Definition 15. The generalized Reidemeister moves
on a diagram of a link L C L(p,q) are the moves
Ry, Ry, R3 of Figure 4 and the moves Ry, R5, Rg and
R7 of Figure 14.

R +2
4 o
+1
-1 —2
—2 -1
+2 +1
R5 il
+1 +2
—1
+1
) 0
—2
+2

Fig. 14. Generalized Reidemeister moves

Theorem 16. Two links Lo and Ly in L(p,q)
are equivalent if and only if their diagrams can be
joined by a finite sequence of generalized Reidemeister
moves Ry, ..., Ry and diagram isotopies.

Proof. 1t is easy to see that each Reidemeister
move produces equivalent links, hence a finite
sequence of Reidemeister moves and isotopies on a
diagram does not change the equivalence class of the
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link.

On the other hand, if we have two equivalent links
Ly and Ly, then we have an ambient isotopy between
the two ambient spaces, namely: H : L(p, q) x[0,1] —
L(p,q). At each t € [0, 1] we have a link L;, defined by
hi(lo). Again, as for links in S?, using general position
theory we can assume that the projection p(L}) is not
regular only a finite number of times, and that at each
of these times it violates only one condition.
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Fig. 15. Regularity violations produce generalized Reidemeister moves

From each type of violation a transformation of
the diagram appears, that is to say, a generalized
Reidemeister move, as it follows (see Figures 5 and
15):

— from violations Vi, V5 and V3 we obtain the
classic Reidemeister moves Rj, Ry and Rs;
from violation V4 we obtain move Ry;

from violation V5, we obtain two different
moves, if the arcs L’ with endpoints on the
boundary are from the same side with respect
to equator, then we obtain Rj, on the contrary

we obtain Rg;
for condition 6 we have a family of violation

Vza,...,Vep—1, from which we obtain the

moves Ry 1,...,Rrp_1.

Indeed, if an arc cross the equator during the
isotopy, then we have a class of moves, Ry, =
R7,Rr79,...,R7 1. All these moves can be seen as
the composition of R7, Rg, R4 and Ry moves. More
precisely, the move Ry with £ =2,...,p—1, can be
obtained by the following sequence of moves: first we
perform an R7; move on one overpass that end on the
equator and the corresponding point in a small arc,
then we repeat for £ — 1 times the three moves Rg-
R4-R; necessary to retract the small arc with same
sign ending point (see an example in Figure 16).

So we can exclude Ry o, ..., R7p_1 from the move
set and keep only R7; = R7. As a consequence, any

80

pair of diagrams of two equivalent links can be joined
by a finite sequence of generalized Reidemeister
moves Ry, ..., R; and diagram isotopies. O
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Fig. 16. How to reduce a composite move
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