УДК 517.9

АНАЛИЗ РАЗРЕШИМОСТИ КРАЕВОЙ ЗАДАЧИ ДЛЯ УРАВНЕНИЙ СМЕСЕЙ ВЯЗКИХ СЖИМАЕМЫХ ЖИДКОСТЕЙ

Н. А. Кучер, Д. А. Прокудин

ANALYSIS OF SOLUTIONS TO THE BOUNDARY VALUE PROBLEM FOR EQUATIONS OF MIXTURES OF COMPRESSIBLE VISCOUS FLUIDS

N. A. Kucher, D. A. Prokudin

В работе исследуется корректность первой краевой задачи для системы уравнений с частными производными, описывающих стационарное движение двухкомпонентных смесей вязких сжимаемых жидкостей в общем случае трех пространственных переменных.

The purpose of this work is to explore a first boundary value problem for equations of mixtures of compressible viscous fluids in the steady three-dimensional case.

Ключевые слова: краевые задачи, динамика смесей, решение уравнений Навье-Стокса.

Keywords: boundary value problems, dynamics of mixtures, solution of Navier-Stokes equations.

В данной работе рассматривается задача об установившемся баротропном движении двухкомпонентных смесей вязких сжимаемых жидкостей в следующей постановке.

Задача А.

Смесь занимает ограниченную область $\Omega\subset R^3$ евклидова пространства точек $x=(x_1,x_2,x_3)$ граница $\partial\Omega$ которой принадлежит классу C^2 . Требуется найти векторные поля скоростей $\overset{-}u^{(i)},\ i=1,2$ и скалярные поля плотностей $\rho_i,\ i=1,2$ составляющих смеси, удовлетворяющие уравнениям [1-3]

$$div\left(\overrightarrow{\rho_i u^{(i)}}\right) = 0 \text{ s } \Omega, i = 1, 2, \tag{1}$$

краевым условиям прилипания

$$\vec{u}^{(i)} = 0 \text{ } \mu a \partial \Omega, i = 1, 2 \tag{3}$$

и условиям нормировки

$$\int \rho_i \, dx = M_i > 0, \, i = 1, 2. \tag{4}$$

В уравнениях (2) операторы

$$L_{ij} = -\mu_{ij} \Delta - \left(\lambda_{ij} \, + \mu_{ij} \right) \! \nabla div, \quad i,j = 1,2 \, , \label{eq:Lij}$$

$$\lambda_{12} + 2\mu_{12} = 0$$

определены так, что для некоторой постоянной $C_0>0$ выполняется неравенство:

$$\sum_{i,j=1}^{2} \int\limits_{\Omega} L_{ij} \vec{u}^{(j)} \cdot \vec{u}^{(i)} dx \geq C_{0} \sum_{i=1}^{2} \int\limits_{\Omega} \left| \nabla \vec{u}^{(i)} \right|^{2} \! dx.$$

Кроме того, предполагаются выполненными следующие соотношения:

$$p_i = \rho_i^{\gamma}, i = 1, 2, \gamma > 1$$

- давление $\it i$ -ой составляющей смеси,

$$\vec{J}^{(i)} = \left(-1\right)^{i+1} a \left(\vec{u}^{(2)} - \vec{u}^{(1)}\right), i = 1, 2, a > 0,$$

- интенсивность обмена импульсом между составляющими смеси. Массовые силы $\vec{f}^{(1)}$ и $\vec{f}^{(2)}$ в уравнениях (2) считаются заданными достаточно гладкими векторными полями. Величины $M_i, \lambda_{ij}, \mu_{ij}, \gamma$ и a считаются заданными константами. Вопросы корректности задачи $\bf A$ при некоторых упрощениях рассматривались в работах [4-7].

Определение 1. Обобщенным решением краевой задачи ${\bf A}$ называются неотрицательные функции ${\boldsymbol \rho}_i \in L^1(\Omega)$, i=1,2 и векторные поля $\overrightarrow{u}^{(i)} \in W^{1,2}_0(\Omega)$, i=1,2, удовлетворяющие следующим условиям:

$$\begin{split} \int\limits_{\Omega} \rho_i \, dx &= M_i, \quad \rho_i \vec{u}^{(i)} \in L^1(\Omega), \\ \textbf{(A1)} \ \ p_i(\rho_i) &\in L^1_{loc}(\Omega), \\ \rho_i \ |\vec{u}^{(i)}|^2 \in L^1_{loc}(\Omega), \quad i = 1, 2; \end{split}$$

(A2) для любых дифференцируемых функций G_i с ограниченными производными G_i ' $\in C(R)$, i=1,2 и произвольных функций $\psi_i \in C^1(\Omega)$, i=1,2 выполняются интегральные тождества: $\int\limits_{\Omega} \left(G_i(\rho_i) \overset{\cdot}{u}^{(i)} \cdot \nabla \psi_i + \left(G_i(\rho_i) - G_i(\rho_i) \rho_i \right) \psi_i \operatorname{div} \overset{\cdot}{u}^{(i)} \right) dx = 0,$ i=1,2:

(A3) для любых векторных полей $\Vec{arphi}^{(i)} \in C_0^\infty(\Omega)$, i=1,2 выполняются интегральные тождества:

$$\sum_{j=1}^{2} \left(\mu_{ij} \int_{\Omega} \nabla_{u}^{\vec{i}(j)} : \nabla_{\vec{\varphi}}^{\vec{i}(i)} dx + (\lambda_{ij} + \mu_{ij}) \int_{\Omega} di v_{u}^{\vec{i}(j)} di v_{\vec{\varphi}}^{(i)} dx \right) -$$

$$\int_{\Omega} \rho_i \overrightarrow{u}^{(i)} \otimes \overrightarrow{u}^{(i)} : \nabla \overrightarrow{\varphi}^{(i)} dx = \int_{\Omega} \rho_i^{\gamma} \operatorname{div} \overrightarrow{\varphi}^{(i)} dx + \int_{\Omega} (\overrightarrow{J}^{(i)} + \rho_i \overrightarrow{f}^{(i)}) \cdot \overrightarrow{\varphi}^{(i)} dx, i = 1, 2.$$

Сформулируем теорему о разрешимости задачи **A**, которая является главным результатом этой работы

Теорема 1. Для любых

 $\vec{f}^{(i)} \in C(\Omega), i = 1,2, \quad \gamma > 3$ краевая задача **A** имеет по крайней мере одно обобщенное решение.

Ограниченный объем статьи позволяет лишь кратко охарактеризовать основные этапы доказательства этого утверждения. Обобщенное решение задачи **A** получено как предел обобщенных решений следующей регуляризованной краевой задачи:

$$\begin{split} &-\varepsilon\Delta\rho_{i}^{\varepsilon}\,+\,div(\rho_{i\,\,u_{\varepsilon}}^{\varepsilon\,\rightarrow\,(i)})\,+\,\varepsilon\rho_{i}^{\varepsilon}\,=\\ &=\varepsilon\,\frac{M_{i}}{|\Omega|}\,_{\mathrm{B}}\,\Omega,\,i=1,2, \end{split} \tag{5}$$

$$\begin{split} &\sum_{j=1}^{2} L_{ij} \overset{\cdot}{u}_{\varepsilon}^{(j)} + \frac{\varepsilon}{2} \rho_{i}^{\varepsilon \overset{\cdot}{u}_{\varepsilon}}^{(i)} + \frac{\varepsilon}{2} \frac{M_{i}}{|\Omega|} \overset{\cdot}{u}_{\varepsilon}^{(i)} + \\ &+ \frac{1}{2} \rho_{i}^{\varepsilon} (\overset{\cdot}{u}_{\varepsilon}^{(i)} \cdot \nabla) \overset{\cdot}{u}_{\varepsilon}^{(i)} + \\ &+ \frac{1}{2} div (\rho_{i}^{\varepsilon \overset{\cdot}{u}_{\varepsilon}^{(i)}} \otimes \overset{\cdot}{u}_{\varepsilon}^{(i)}) + \nabla p_{i}^{\varepsilon} = \overset{\cdot}{J}_{\varepsilon}^{(i)} + \\ &+ \rho_{i}^{\varepsilon} \overset{\cdot}{f}^{(i)} \text{ B } \Omega, \ i = 1, 2, \\ &\overset{\cdot}{u}_{\varepsilon}^{(i)} = 0, \ \nabla \rho_{i}^{\varepsilon} \cdot \overset{\cdot}{n} = 0 \text{ Ha } \partial \Omega, \ i = 1, 2, \\ &\int \rho_{i}^{\varepsilon} dx = M_{i}, \ i = 1, 2, \end{split} \tag{6}$$

 $p_i^{arepsilon}=(
ho_i^{arepsilon})^{\gamma}\,,\qquad \vec{J}_{\,arepsilon}^{(i)}=(-1)^{i+1}a(\vec{u}_{\,arepsilon}^{\,\,\,(2)}-\vec{u}_{\,arepsilon}^{\,\,\,(1)}),\ i=1,2\,,$ $|\Omega|=meas(\Omega)\,,\ \ arepsilon\in(0,1]\,,\ \ \vec{n}\,$ — вектор единичной внешней нормали к границе $\partial\Omega$ области Ω . Сначала доказывается существование сильного обобщенного решения задачи $\mathbf{A}_{\,arepsilon}$.

которую условимся называть задачей \mathbf{A}_{ε} . Здесь

Определение 2. Сильным обобщенным решением задачи \mathbf{A}_{ε} называются неотрицательные функции $\rho_i^{\varepsilon} \in W^{2,q}(\Omega) \ \ \forall \ \ 1 \leq q < \infty$, $\int\limits_{\Omega} \rho_i^{\varepsilon} \ dx = M_i$, i=1,2 и векторные поля $u_{\varepsilon}^{-(i)} \in W^{2,q}(\Omega) \ \ \forall \ \ 1 \leq q < \infty$, i=1,2 такие, что уравнения (5)-(6) выполнены п.в. в Ω и п.в. на $\partial\Omega$ - краевые условия (7).

Теорема 2. Для любых $\vec{f}^{(i)} \in C(\Omega), i=1,2$, $\gamma>3$ краевая задача \mathbf{A}_{ε} имеет по крайней мере одно сильное обобщенное решение, которое удовлетворяет неравенству

$$\sum_{i=1}^{2} \left(\left\| \rho_{i}^{\varepsilon} \right\|_{L^{2\gamma}(\Omega)} + \left\| u_{\varepsilon}^{-i(i)} \right\|_{W_{0}^{1,2}(\Omega)} + \left\| \varepsilon \nabla \rho_{i}^{\varepsilon} \right\|_{L^{\gamma+3}(\Omega)} + \right) \leq C, \tag{9}$$

где постоянная C>0 зависит только от $\left\| \overrightarrow{f}^{(i)} \right\|_{C(\Omega)}$, λ_{ij} , μ_{ij} , γ , Ω , M_i , a и не зависит от параметра ε .

Доказательство. Предположим, что $ho_i^arepsilon \geq 0$, $ho_i^{(i)}$, i=1,2 , принадлежащие

 $W^{2,q}(\Omega)\ \ \, \forall\ \ \, 1\leq q<\infty$ удовлетворяют (5)-(8). Докажем сначала, что при этом имеет место неравенство (9), не зависящее от параметра ε . Умножая обе части уравнений (6) скалярно на $u^{-(i)}$, i=1,2, интегрируя результат по области Ω и суммируя по i=1,2, получим:

$$C_{0}\sum_{i=1}^{2}\int_{\Omega}|\nabla_{u}^{(i)}|^{2}dx + \frac{\varepsilon}{2}\sum_{i=1}^{2}\int_{\Omega}\rho_{i}|_{u}^{(i)}|^{2}dx +$$

$$+\varepsilon\frac{1}{2|\Omega|}\sum_{i=1}^{2}M_{i}\int_{\Omega}|_{u}^{(i)}|^{2}dx +$$

$$+\varepsilon\frac{\gamma}{\gamma-1}\sum_{i=1}^{2}\int_{\Omega}\rho_{i}^{\gamma}dx + \varepsilon\gamma\sum_{i=1}^{2}\int_{\Omega}\rho_{i}^{\gamma-2}|\nabla\rho_{i}|^{2}dx +$$

$$+a\int_{\Omega}|_{u}^{(1)}-|_{u}^{(2)}|^{2}dx \leq$$

$$\leq \varepsilon\frac{1}{|\Omega|}\frac{\gamma}{\gamma-1}\sum_{i=1}^{2}M_{i}\int_{\Omega}\rho_{i}^{\gamma-1}dx +$$

$$+\sum_{i=1}^{2}\int_{\Omega}\rho_{i}\overrightarrow{f}^{(i)}\cdot \overrightarrow{u}^{(i)}dx.$$
(10)

Здесь и далее, для простоты записи опустим у решения задачи \mathbf{A}_{ε} индекс ε . В силу ограниченности вложения $W_0^{1,2}(\Omega)$ в $L^6(\Omega)$, из (10) следует неравенство

$$\sum_{i=1}^{2} \|\vec{u}^{(i)}\|_{W_{0}^{1,2}(\Omega)}^{2} \leq
\leq C \left(\|\vec{f}^{(i)}\|_{C(\Omega)}, \lambda_{ij}, \mu_{ij}, \gamma, \Omega, M_{i} \right)
\left(\sum_{i=1}^{2} \|\rho_{i}\|_{L^{\frac{6}{5}}(\Omega)}^{2} + 1 \right).$$
(11)

Для вывода других оценок решений задачи \mathbf{A}_{ε} , будем использовать линейный оператор $B:\left\{g\in L^2(\Omega)\mid \int_{\Omega}g\,dx=0\right\} o W_0^{1,2}(\Omega),$ обладающий следующими свойствами [8]: 1) функция $\overrightarrow{v}=B[g]$ - решение задачи $\overrightarrow{div}\,\overrightarrow{v}=g$ в Ω , $\overrightarrow{v}=0$ на $\partial\Omega$; 2) $\left\|B[g]\right\|_{W_0^{1,2}(\Omega)} \leq C \left\|g\right\|_{L^2(\Omega)}$. Взяв в качестве тестовых функций $\overrightarrow{\varphi}^{(i)}$, i=1,2 в слабой форму-

лировке уравнений (6) такие, что $\ \vec{\varphi}^{(i)}=B[g_i]$, где $g_i=\rho_i^{\gamma}-\frac{1}{\mid\Omega\mid}\int_{\Omega}\rho_i^{\gamma}\,dx,\ i=1,2$, другими словами $div\,\vec{\varphi}^{(i)}=\rho_i^{\gamma}-\frac{1}{\mid\Omega\mid}\int_{\Omega}\rho_i^{\gamma}\,dx$

в Ω , $\vec{\varphi}^{(i)}=0$ на $\partial\Omega$, i=1,2,

и используя неравенства:

$$\left\| ec{arphi}^{(i)}
ight\|_{W_0^{1,2}(\Omega)} \leq C \left\|
ho_i
ight\|_{L^{2\gamma}(\Omega)}^{\gamma}, \ i=1,2$$
 (см. свойство 2)

оператора B), в результате получаем, что при $\gamma > 3$

$$\begin{split} & \left\| \rho_{i} \right\|_{L^{2\gamma}(\Omega)}^{\gamma} \leq C \left\| \rho_{i} \right\|_{L^{2\gamma}(\Omega)}^{\frac{2\gamma-3}{2\gamma-1}} + \\ & + C \left\| \overrightarrow{u}^{(i)} \right\|_{W_{0}^{1,2}(\Omega)}^{2} \left\| \rho_{i} \right\|_{L^{2\gamma}(\Omega)} + \\ & + C \sum_{i=1}^{2} \left\| \overrightarrow{u}^{(j)} \right\|_{W_{0}^{1,2}(\Omega)} + C, \ i = 1, 2, \end{split} \tag{12}$$

где постоянная $\ C = C \bigg(\Big\| \vec{f}^{\,(i)} \Big\|_{C(\Omega)}, \lambda_{ij}, \mu_{ij}, \gamma, \Omega, M_i, a \bigg)$

не зависит от параметра $\, arepsilon \,$. Используя неравенства

$$\left\|\rho_i\right\|_{L^{\tilde{p}}(\Omega)}^{\frac{c}{6}} \leq C(M_i,\gamma) \left\|\rho_i\right\|_{L^{2\gamma}(\Omega)}^{\frac{\gamma}{3(2\gamma-1)}}, \ i=1,2,$$

получаем теперь из (11) и (12) оценку

$$[R(\vec{\rho})]^{\gamma} \le C[R(\vec{\rho})]^{\gamma \frac{2\gamma - 3}{2\gamma - 1}} + CR(\vec{\rho}) + C[R(\vec{\rho})]^{\frac{\gamma}{3(2\gamma - 1)}} + C[R(\vec{\rho})]^{\frac{2\gamma}{3(2\gamma - 1)} + 1} + C,$$
(13)

где
$$R(\vec{
ho}) = \sum_{i=1}^2 \left\| \rho_i \, \right\|_{L^{2\gamma}(\Omega)}, \ \ \vec{
ho} = (\rho_1, \rho_2)$$
 , постоянная

C зависит только от $\left\| \overrightarrow{f}^{(i)}
ight\|_{C(\Omega)},~\lambda_{ij}$, $~\mu_{ij},~\gamma$, $~\Omega,~M_{i}$

и $\,a$. Далее, так как при $\,\gamma>\frac{3}{2}\,$ верно неравенство

$$\gamma > \max \left\{ \begin{aligned} &1, \gamma \frac{2\gamma - 3}{2\gamma - 1}, \frac{\gamma}{3(2\gamma - 1)}, 1 + \\ &+ \frac{2\gamma}{3(2\gamma - 1)} \end{aligned} \right\},$$

то из (13) получаем, что

$$R(\vec{\rho}) = \sum_{i=1}^{2} \|\rho_{i}\|_{L^{2\gamma}(\Omega)} \leq$$

$$\leq C \left(\|\vec{f}^{(i)}\|_{C(\Omega)}, \lambda_{ij}, \mu_{ij}, \gamma, \Omega, M_{i}, a \right).$$

$$(14)$$

Осталось заметить, что из оценок (11), (14) и соотношений [9, с. 87]

$$\begin{split} & \left\| \varepsilon \nabla \rho_{i} \right\|_{L^{\gamma+3}(\Omega)}^{\frac{6\gamma}{6\gamma+3}} \leq \\ & \leq C \left[1 + \left\| \rho_{iu}^{\overrightarrow{i}(i)} \right\|_{L^{\gamma+3}(\Omega)}^{\frac{6\gamma}{6\gamma+3}} \right] \leq C, \ i = 1,2 \end{split} \tag{15}$$

следует неравенство (9) с положительной постоянной C , зависящей только от

$$\left\| \overrightarrow{f}^{(i)}
ight\|_{C(\Omega)}, \lambda_{ij}, \mu_{ij}, \gamma, \Omega, M_i, a$$
 и не зависящей от параметра ε .

Докажем теперь существование сильного обобщенного решения краевой задачи ${\bf A}_{\varepsilon}$, используя принцип неподвижной точки Лере-Шаудера [10, с. 258]. Для произвольного p>3 и заданных вектор-функций

$$u_*^{-(i)} \in B_p = \left\{v \in W^{2,p}(\Omega): v = 0 \text{ на } \partial\Omega\right\}, \ i = 1,2$$
 обозначим через $\rho_i = S(v_*^{-(i)}), \ i = 1,2$ - решения

пач

$$\begin{split} -\varepsilon\Delta\rho_i + div(\rho_i\overset{\rightarrow}{u_*}^{(i)}) + \varepsilon\rho_i &= \varepsilon\frac{M_i}{|\Omega|} \text{ в }\Omega,\\ \nabla\rho_i \cdot \vec{n} &= 0 \text{ на }\partial\Omega, \ i = 1,2. \end{split} \tag{16}$$

Оператор S является непрерывным и компактным оператором из B_p в $W^{2,q}(\Omega)$ \forall $1 \leq q < \infty$ и, кроме того, решения $\rho_i \in W^{2,q}(\Omega)$, $q \geq 1$ — произвольное, $\int\limits_{\Omega} \rho_i \, dx = M_i$, i=1,2 задач (16) единственным неотримательным и для них справедливы

венны, неотрицательны и для них справедливы оценки [11, Лемма 2]:

$$\begin{aligned} & \|\rho_i\|_{W^{1,p}(\Omega)} = \left\|S(\overrightarrow{u}_*^{(i)})\right\|_{W^{1,p}(\Omega)} \leq \\ & \leq C\left[\varepsilon, \left\|\overrightarrow{u}_*^{(i)}\right\|_{L^p(\Omega)}\right], \ p > 3, \ i = 1, 2, \end{aligned}$$

$$\tag{17}$$

$$\|\rho_{i}\|_{W^{2,p}(\Omega)} = \|S(\overrightarrow{u}_{*}^{(i)})\|_{W^{2,p}(\Omega)} \leq$$

$$\leq C\left[\varepsilon, \|\overrightarrow{u}_{*}\|_{W^{1,p}(\Omega)}\right], \ p > \frac{3}{2}.$$

$$(18)$$

Далее, обозначим через

$$\vec{u} = (\vec{u}^{(1)}, \vec{u}^{(2)}) = \Lambda(\vec{F}) = \Lambda(\vec{F}^{(1)}, \vec{F}^{(2)})$$
 (19)

решение краевой задачи для сильно эллиптической системы уравнений:

$$\sum_{j=1}^{2} L_{ij} \overset{\neg}{u}^{(j)} = \vec{F}^{(i)} \text{ в } \Omega, \ i = 1, 2,$$

$$\overset{\neg}{u}^{(i)} = 0 \text{ на } \partial \Omega, \ i = 1, 2.$$
 (20)

Из классических результатов для эллиптических краевых задач [12, 13] имеем, что при условиях $\vec{F}^{(i)} \in L^p(\Omega)$, i=1,2 задача (20) имеет единственное решение $\overset{\circ}{u} \in W^{2,p}(\Omega)$, причем справедлива оценка

$$\sum_{i=1}^{2} \|\vec{u}^{(i)}\|_{W^{2,p}(\Omega)} \leq
\leq C(p, \lambda_{ij}, \mu_{ij}, \Omega) \sum_{i=1}^{2} \|\vec{F}^{(i)}\|_{L^{p}(\Omega)}.$$
(21)

В соответствии со структурой уравнений (6), введем операторы

$$F^{(i)}(\rho_{i}, \vec{u}_{*}) = -\frac{\varepsilon}{2} \rho_{i} \vec{u}_{*}^{(i)} - \frac{\varepsilon}{2} \frac{M_{i}}{\Omega | \vec{u}_{*}}^{(i)} - \frac{\varepsilon}{2} \frac{M_{i}}{\Omega | \vec{u}_{*}}^{(i)} - \frac{1}{2} \rho_{i} (\vec{u}_{*}^{(i)} \cdot \nabla) \vec{u}_{*}^{(i)} - \frac{1}{2} div(\rho_{i} \vec{u}_{*}^{(i)} \otimes \vec{u}_{*}^{(i)}) - \frac{1}{2} (22)$$

$$-\nabla \rho_{i}^{\gamma} + \vec{J}_{*}^{(i)} + \rho_{i} \vec{f}^{(i)},$$

где

$$\vec{J}_*^{(i)} = (-1)^{i+1} a(\vec{u}_*^{(2)} - \vec{u}_*^{(1)}), \ i = 1, 2, \quad \vec{u}_* = (\vec{u}_*^{(1)}, \vec{u}_*^{(2)}).$$

В силу непрерывности вложения $W^{2,p}(\Omega)$ в

$$C^{1,\alpha}(\Omega)$$
, $\alpha = \frac{p-3}{p}$, $p > 3$

из условий:

$$\rho_i \in W^{2,p}(\Omega)$$
 , $\overrightarrow{u}_* \in W^{2,p}(\Omega)$, $i = 1,2$

следует непрерывность в $\,\Omega\,$ вектор-функций

$$x \to F^{(i)}(\rho_i(x), \vec{u}_*(x)) \,, \; i = 1, 2 \,,$$

причем имеют место оценки:

$$\begin{split} & \left\| F^{(i)}(\rho_{i}, \overrightarrow{u_{u}}) \right\|_{C(\Omega)} \leq \\ & \leq C \left(\left\| \rho_{i} \right\|_{C(\Omega)} \left\| \overrightarrow{u_{u}} \right\|_{C(\Omega)} + \left\| \rho_{i} \right\|_{C(\Omega)} \left\| \overrightarrow{u_{u}} \right\|_{C^{1}(\Omega)}^{2} + \\ & + \left\| \rho_{i} \right\|_{C^{1}(\Omega)} \left\| \overrightarrow{u_{u}} \right\|_{C(\Omega)}^{2} + \left\| \rho_{i} \right\|_{C^{1}(\Omega)}^{\gamma} + \sum_{j=1}^{2} \left\| \overrightarrow{u_{u}} \right\|_{C(\Omega)}^{\gamma} + \\ & + \left\| \rho_{i} \right\|_{C(\Omega)} \left\| \overrightarrow{f}^{(i)} \right\|_{C(\Omega)}, \ i = 1, 2. \end{split}$$

Более того, нетрудно убедиться в справедливости неравенств

$$\begin{split} & \left\| F^{(i)}(\rho_{i}^{\;'},\overrightarrow{u_{*}}^{\;'}) - F^{(i)}(\rho_{i}^{\;''},\overrightarrow{u_{*}}^{\;''}) \right\|_{L^{p}(\Omega)} \leq \\ & \leq C(\Omega) \left\| F^{(i)}(\rho_{i}^{\;'},\overrightarrow{u_{*}}^{\;'}) - F^{(i)}(\rho_{i}^{\;''},\overrightarrow{u_{*}}^{\;''}) \right\|_{C(\Omega)} \leq \\ & \leq C_{1} \left\| \rho_{i}^{\;'} - \rho_{i}^{\;''} \right\|_{C^{1}(\Omega)} + C_{2} \sum_{i=1}^{2} \left\| \overrightarrow{u_{*}}^{\;(j)'} - \overrightarrow{u_{*}}^{\;(j)'} \right\|_{C^{1}(\Omega)}, \; i = 1, 2, \end{split}$$

где

$$C_{i} = C_{i} \bigg(\big\| \rho_{i}^{\ '} \big\|_{\mathcal{C}^{1}(\Omega)}, \big\| \rho_{i}^{\ ''} \big\|_{\mathcal{C}^{1}(\Omega)}, \big\| \overset{\rightarrow}{u_{*}} \big\|_{\mathcal{C}^{1}(\Omega)}, \big\| \overset{\rightarrow}{u_{*}} \big\|_{\mathcal{C}^{1}(\Omega)} \bigg),$$

i = 1,2 - локально ограниченные функции своих аргументов.

Определим теперь оператор

$$\Psi:B_p\,\to\,B_p,\;p>3$$

по формуле:

$$\Psi(\vec{u}_*) = \Lambda \begin{bmatrix} F^{(1)}(S(\vec{u}_*), \vec{u}_*), \\ F^{(2)}(S(\vec{u}_*), \vec{u}_*) \end{bmatrix}, \tag{25}$$

где операторы S , Λ и $F^{(i)},\,i=1,2$ определены выше.

Неподвижные точки $\overset{
ightarrow}{u}=(\overset{
ightarrow}{u},\overset{
ightarrow}{u})$ оператора Ψ вместе с соответствующими функциями $\rho_i=S(\overset{
ightarrow}{u})$, i=1,2 являются решениями релаксированной краевой задачи \mathbf{A}_{ε} . Это очевидно, поскольку построение образа $\Psi(\overset{
ightarrow}{u},\overset{
ightarrow}{u},\overset{
ightarrow}{u}=(\overset{
ightarrow}{u},\overset{
ightarrow}{u},\overset{
ightarrow}{u})$ элемента $\overset{
ightarrow}{u}_*\in B_p$ заключается в последовательном решении задач (16) и краевой задачи:

$$\begin{split} &\sum_{j=1}^{2} L_{ij} \overrightarrow{u}^{(j)} = -\frac{\varepsilon}{2} \rho_{i} \overrightarrow{u_{*}}^{(i)} - \frac{\varepsilon}{2} \frac{M_{i}}{|\Omega|} \overrightarrow{u}_{*}^{(i)} - \\ &-\frac{1}{2} \rho_{i} (\overrightarrow{u_{*}}^{(i)} \cdot \nabla) \overrightarrow{u_{*}}^{(i)} - \frac{1}{2} div (\rho_{i} \overrightarrow{u_{*}}^{(i)} \otimes \overrightarrow{u_{*}}^{(i)}) - \\ &-\nabla \rho_{i}^{\gamma} + (-1)^{i+1} a (\overrightarrow{u_{*}}^{(2)} - \overrightarrow{u_{*}}^{(1)}) + \rho_{i} \overrightarrow{f}^{(i)}, \\ &\rho_{i} = S(\overrightarrow{u_{*}}^{(i)}) \text{ B } \Omega, \ i = 1, 2, \quad \overrightarrow{u}^{(i)} = 0 \end{split}$$

Покажем, что оператор Ψ из (25) удовлетворяет условиям теоремы Лере-Шаудера. Установим сначала непрерывность оператора Ψ . Пусть $\vec{u}_{*_n} \in B_p \,, \qquad \vec{u}_{*_n} = (\vec{u}_{*_n}^{(1)}, \vec{u}_{*_n}^{(2)}) \,, \qquad n=1,2,\dots \quad \text{и}$ $\vec{u}_{*_n} \to \vec{u}_* \text{ сильно в } B_p \text{ при } n \to \infty \,.$

Тогда, в силу непрерывности оператора $S:B_p \to W^{2,p}(\Omega)$ имеем:

$$\rho_i^n = S(\stackrel{\boldsymbol{\cdot}}{\boldsymbol{(}}{}^{(i)}_{u_*}) \rightarrow \rho_i = S(\stackrel{\boldsymbol{\cdot}}{\boldsymbol{(}}{}^{(i)}_{u_*}),\, n \rightarrow \infty,\, i=1,2$$

по норме $W^{2,p}\left(\Omega\right)$. Из непрерывности вложения $W^{2,p}(\Omega)$ в $C^1(\Omega)$, p>3 и свойств (24) операторов $F^{(i)}$ получаем, что

$$F^{\left(i\right)}\left(S\left(\vec{u}_{*_{n}}^{\left(i\right)}\right), \vec{u}_{*_{n}}\right) \to F^{\left(i\right)}\left(S\left(\vec{u}_{*}^{\left(i\right)}\right), \vec{u}_{*}\right), i = 1, 2$$

при $n \to \infty$ в пространствах $L^p(\Omega)$ и $C(\Omega)$. Наконец, из ограниченности линейного оператора $\Lambda: L^p(\Omega) \to W^{2,p}(\Omega)$ (оценка (21)) следует, что $\Psi(\stackrel{\centerdot}{u_*}) \to \Psi(\stackrel{\centerdot}{u_*}), \ n \to \infty$ сильно в B_p .

Для доказательства компактности оператора Ψ возьмем ограниченную последовательность $\begin{Bmatrix} \vec{u}_{*_n} \end{Bmatrix}$ в B_p . В силу компактности оператора $S:B_p \to W^{2,p}(\Omega)$ и компактности вложения $W^{2,p}(\Omega) \to C^1(\Omega)$, из последовательности $\begin{Bmatrix} \vec{u}_{*_n} \end{Bmatrix}$

выделим подпоследовательность, сохранив за ней прежнее обозначение, такую что

$$\stackrel{
ightarrow(i)}{u_*} \rightarrow \stackrel{
ightarrow(i)}{u_*}$$
 сильно в $C^1(\Omega),\ i=1,2,$

$$\rho_i^n = S(\overset{\boldsymbol{\neg}(i)}{u_*}) \to \rho_i = S(\overset{\boldsymbol{\neg}(i)}{u_*})$$

сильно в $W^{2,p}(\Omega)$, i=1,2

$$\vec{u}_* = (\vec{u}_*, \vec{u}_*) \stackrel{(1)}{=} (B_p.$$

Повторяя далее предыдущие рассуждения, получим, что $\Psi(\vec{u}_{*_n}) \to \Psi(\vec{u}_*), \ n \to \infty$ в пространстве

 $\boldsymbol{B}_{\boldsymbol{p}}$. Компактность оператора $\boldsymbol{\Psi}$ установлена.

Далее отметим, что множество всех решений класса B_p уравнения $t\Psi(u)=u,\,t\in[0;1]$ ограниченно в B_p . Другими словами, для решений $u\in B_p$ следующего семейства краевых задач, зависящих от параметра $t\in[0;1]$:

$$\begin{split} \sum_{j=1}^{2} L_{ij} \overrightarrow{u}^{(j)} &= -\frac{\varepsilon t}{2} \rho_{i} \overrightarrow{u}^{(i)} - \varepsilon \frac{t M_{i}}{2 \mid \Omega \mid} \overrightarrow{u}^{(i)} - \\ &- \frac{t}{2} \rho_{i} (\overrightarrow{u}^{(i)} \cdot \nabla) \overrightarrow{u}^{(i)} - \frac{t}{2} \operatorname{div}(\rho_{i} \overrightarrow{u}^{(i)} \otimes \overrightarrow{u}^{(i)}) - \\ &- t \nabla \rho_{i}^{\gamma} + t \overrightarrow{J}^{(i)} + t \rho_{i} \overrightarrow{f}^{(i)} \text{ B } \Omega, \end{split} \tag{27}$$

$$\eta_{i}^{(i)}=0$$
 на $\partial\Omega$, $i=1,2,$

где $\rho_i = S(\vec{n}^{(i)})$, i = 1, 2, справедлива оценка

$$\begin{split} &\sum_{i=1}^{2} \left(\left\| \rho_{i} \right\|_{W^{2,p}\left(\Omega\right)} + \left\| \overrightarrow{u}^{(i)} \right\|_{W^{2,p}\left(\Omega\right)} \right) \leq \\ &\leq C \left(\varepsilon, p, \left\| \overrightarrow{f}^{(i)} \right\|_{C(\Omega)}, \lambda_{ij}, \mu_{ij}, \gamma, \Omega, M_{i}, a \right). \end{split} \tag{28}$$

Итак, в силу теоремы Лере-Шаудера можно утверждать, что задача \mathbf{A}_{ε} имеет по крайней мере одно сильное обобщенное решение. Теорема 2 доказана.

Предельный переход. Следующий шаг состоит в том, чтобы совершить предельный переход (в слабом смысле) в уравнениях (5)-(6) при $\varepsilon \to 0$. Благодаря априорной оценке (9), можно извлечь подпоследовательности, снова обозначенные как ρ_i^ε ,

$$\overrightarrow{u}_{arepsilon}^{(i)}$$
 , $\,i=1,2\,$ такие, что при $\,arepsilon\, o 0\,$

$$\rho_i^{\varepsilon} \to \rho_i$$
 слабо в $L^{2\gamma}(\Omega), i = 1, 2,$ (29)

$$\stackrel{\scriptstyle
ightarrow (i)}{u_{\varepsilon}}
ightarrow \stackrel{\scriptstyle
ightarrow (i)}{u}$$
 слабо в $W_0^{1,2}(\Omega),\,i=1,2,$ (30)

и, по теореме вложения,

$$\stackrel{
ightarrow (i)}{u_{arepsilon}}
ightarrow \stackrel{
ightarrow (i)}{u}$$
 сильно в $L^q(\Omega),\, q \in [1;6),\, i=1,2.$ (31)

Кроме того, из оценок (9) и (10) следует неравенство

$$\begin{split} & \varepsilon \sum_{i=1}^{2} \int\limits_{\Omega} (\rho_{i}^{\varepsilon})^{\gamma-2} \mid \nabla \rho_{i}^{\varepsilon} \mid^{2} dx \leq \\ & \leq C \bigg(\left\| \vec{f}^{(i)} \right\|_{C(\Omega)}, \lambda_{ij}, \mu_{ij}, \gamma, \Omega, M_{i}, a \bigg), \end{split} \tag{32}$$

где постоянная $\,C\,$ не зависит от параметра $\,\varepsilon\,$. Из этого неравенства и из уравнений (5) следует, что

$$\varepsilon \nabla \rho_i^{\varepsilon} \to 0, \varepsilon \to 0$$

сильно в
$$L^{q}(\Omega), 1 \leq q < \frac{6\gamma}{\gamma + 3}, i = 1,2.$$

Переходя к пределу по выбранным подпоследовательностям в уравнениях (5)-(6) при $\varepsilon \to 0$ получим, что предельные функции $\rho_i \in L^{2\gamma}(\Omega)$, $\rho_i \geq 0$,

$$\int\limits_{\Omega}\rho_i\,dx=M_i,\ \overrightarrow{u}^{(i)}\in W^{1,2}_0(\Omega)\,,\ i=1,2\ \text{при}\ \gamma>3$$

удовлетворяют в слабом смысле следующей системе уравнений:

$$div(\rho_{iu}^{\rightarrow (i)}) = 0 \text{ B } \Omega, i = 1, 2,$$
 (33)

$$\sum_{j=1}^{2} L_{ij} \vec{u}^{(j)} + div(\rho_{i} \vec{u}^{(i)} \otimes \vec{u}^{(i)}) + + \nabla_{p_{i}}^{-} = \vec{J}^{(i)} + \rho_{i} \vec{f}^{(i)} \text{ B } \Omega, i = 1, 2,$$
(34)

где

Кроме того отметим, что предельные функции ρ_i , i=1,2 являются ренормализованными решениями уравнений неразрывности (1) (т. е. данные функции удовлетворяют условию (**A2**) Определения 1) и справедливы соотношения [7, с. 62-63]

$$\int_{\Omega} \rho_i div \, \vec{u}^{(i)} dx = 0, \quad i = 1, 2, \tag{36}$$

$$\int \rho_i^\varepsilon div\, \vec{u}_\varepsilon^{(i)} dx \le$$

$$\leq \varepsilon C \left(\left\| \vec{f}^{(i)} \right\|_{C(\Omega)}, \lambda_{ij}, \mu_{ij}, \gamma, \Omega, M_i, a \right), \tag{37}$$

Таким образом, чтобы завершить доказательство Теоремы 1, следует показать, что имеют место равенства

$$p_i = \rho_i^{\gamma}, i = 1, 2.$$
 (38)

Следующая лемма показывает слабую регулярность так называемых эффективных вязких потоков компонент смеси, которые определяются формулами:

$$p_{i} - (\lambda_{i1} + 2\mu_{i1})div_{u}^{(1)} - (\lambda_{i2} + 2\mu_{i2})div_{u}^{(2)}, i = 1,2$$

Лемма 1 [7, с. 60]. Пусть ρ_i^{ε} , $u_{\varepsilon}^{(i)}$, i=1,2— последовательности решений задачи \mathbf{A}_{ε} , существование которых гарантируется Теоремой 2, и пусть ρ_i , $u_{\varepsilon}^{(i)}$ и p_i , i=1,2 - пределы, определенные в (29), (30) и (35) соответственно. Тогда, при $\varepsilon \to 0$

$$\int_{\Omega} \rho_{j}^{\varepsilon} \begin{bmatrix} (\rho_{i}^{\varepsilon})^{\gamma} - (\lambda_{i1} + 2\mu_{i1}) div_{u_{\varepsilon}}^{(1)} - \\ -(\lambda_{i2} + 2\mu_{i2}) div_{u_{\varepsilon}}^{(2)} \end{bmatrix} \tau^{2} dx \rightarrow$$

$$\rightarrow \int_{\Omega} \rho_{j} \begin{bmatrix} -p_{i} - (\lambda_{i1} + 2\mu_{i1}) div_{u}^{(1)} - \\ -(\lambda_{i2} + 2\mu_{i2}) div_{u}^{(2)} \end{bmatrix} \tau^{2} dx$$

$$\forall \ \tau \in C_{0}^{\infty}(\Omega), i, j = 1, 2. \tag{39}$$

Перейдем к доказательству равенств (38). Предполагая, что $\ \lambda_{12}+2\mu_{12}=0$, рассмотрим соотношение (39) при $\ i=j=1$:

$$\begin{split} &\lim_{\varepsilon \to 0} \int\limits_{\Omega} \left[\left(\rho_{1}^{\varepsilon} \right)^{\gamma} - \left(\lambda_{11} + 2\mu_{11} \right) div \vec{u}_{\varepsilon}^{(1)} \right] \rho_{1}^{\varepsilon} \tau^{2} dx = \\ &= \int\limits_{\Omega} \left[- \left(\lambda_{11} + 2\mu_{11} \right) div \vec{u}^{(1)} \right] \rho_{1} \tau^{2} dx \, \forall \, \tau \in C_{0}^{\infty} \left(\Omega \right). \end{split} \tag{40}$$

Возьмем неубывающую последовательность неотрицательных функций au_n такую, что $au_n\in C_0^\infty\left(\Omega\right),\ au_n\to 1$ при $n\to\infty$ п.в. в $\Omega,$ $0\le au_n\le 1$. Объединяя (36), (37) и (40), получаем для любых $m\le n$

$$\begin{split} & \overline{\lim_{\varepsilon \to 0+}} \int_{\Omega} p_{1}^{\varepsilon} \rho_{1}^{\varepsilon} \tau_{m}^{2} \, dx \leq \overline{\lim_{\varepsilon \to 0}} \int_{\Omega} p_{1}^{\varepsilon} \cdot \rho_{1}^{\varepsilon} \tau_{n}^{2} \, dx \leq \\ & \leq \overline{\lim_{\varepsilon \to 0+}} \int_{\Omega} \tau_{n}^{2} \left[p_{1}^{\varepsilon} - (\lambda_{11} + 2\mu_{11}) div_{u}^{\mathsf{T}(1)} \right] \rho_{1}^{\varepsilon} \, dx + \\ & + (\lambda_{11} + 2\mu_{11}) \overline{\lim_{\varepsilon \to 0+}} \int_{\Omega} \tau_{n}^{2} div_{u}^{\mathsf{T}(1)} \rho_{1}^{\varepsilon} \, dx \leq \\ & \leq \int_{\Omega} \tau_{n}^{2} \left[\overline{p_{1}} - (\lambda_{11} + 2\mu_{11}) div_{u}^{\mathsf{T}(1)} \right] \rho_{1} \, dx + \\ & + (\lambda_{11} + 2\mu_{11}) \overline{\lim_{\varepsilon \to 0+}} \int_{\Omega} |\tau_{n}^{2} - 1| |div_{u}^{\mathsf{T}(1)}| \rho_{1}^{\varepsilon} \, dx + \\ & + (\lambda_{11} + 2\mu_{11}) \overline{\lim_{\varepsilon \to 0+}} \int_{\Omega} div_{u}^{\mathsf{T}(1)} \rho_{1}^{\varepsilon} \, dx \leq \\ & \leq \int_{\Omega} \overline{p_{1}} \rho_{1} \, dx + (\lambda_{11} + 2\mu_{11}) \int_{\Omega} |\tau_{n}^{2} - 1| |div_{u}^{\mathsf{T}(1)}| \rho_{1} \, dx + \eta_{1}(n) \leq \\ & \leq \int_{\Omega} \overline{p_{1}} \rho_{1} \, dx + \eta_{1}(n) + \eta_{2}(n), \end{split} \tag{41}$$

где $\eta_1(n)$, $\eta_2(n)\to 0$ при $n\to\infty$. Переходя к пределу при $n\to\infty$ в неравенстве (41), имеем $\overline{\lim_{\varepsilon\to 0+}}\int\limits_{\Omega}p_1^{\varepsilon}\rho_1^{\varepsilon}\tau_m^2\;dx\leq \int\limits_{\Omega}\overline{p}_1\rho_1\;dx\quad\forall\;m=1,2,...$ (42)

Так как функция $\,z\mapsto z^{\gamma}\,\,(\,\gamma>1\,)$ монотонна на R_0^+ , то

$$\begin{array}{l} \int\limits_{\Omega} \, \tau_m^2 \left[(\rho_1^{\varepsilon})^{\gamma} \, - \, v^{\gamma} \, \right] \cdot (\rho_1^{\varepsilon} \, - \, v) \, dx \, \geq \, 0 \ \, \forall \, v \, \in \, K \, = \\ = \, \left\{ v \, \in \, L^{2\gamma}(\Omega) : v \, \geq \, 0 \, \text{ п.в. B } \, \Omega \, \right\} \end{array}$$

и, следовательно,

$$\int_{\Omega} \tau_m^2 (\rho_1^{\varepsilon})^{\gamma} \rho_1^{\varepsilon} dx \ge
\le \int_{\Omega} \tau_m^2 v^{\gamma} [\rho_1^{\varepsilon} - v] dx + \int_{\Omega} \tau_m^2 (\rho_1^{\varepsilon})^{\gamma} v dx.$$
(43)

Из (42) и (43) следует неравенство:

$$\int_{\Omega}^{\infty} p_{1} \rho_{1} dx \geq \int_{\Omega}^{\infty} \tau_{m}^{2} v^{\gamma} [\rho_{1} - v] dx + \int_{\Omega}^{\infty} \tau_{m}^{2} p_{1}^{\gamma} v dx, m = 1, 2, \dots$$
(44)

Совершая в (44) предельный переход при $m \to \infty$, приходим к неравенству

$$\int_{\Omega} (\overline{p}_1 - v^{\gamma})(\rho_1 - v) dx \ge 0 \quad \forall \ v \in K.$$
 (45)

Полагая здесь $v=\rho_1+\eta\psi$, $\eta>0$, $\psi\in K$, олучим

$$-\eta \int_{\Omega} \left[\overline{p}_1 - (\rho_1 + \eta \psi)^{\gamma} \right] \psi \, dx \ge 0,$$

т. е. $\forall \ \psi \in K$ имеет место неравенство:

$$\int_{\Omega} \left[\overline{p}_1 - (\rho_1 + \eta \psi)^{\gamma} \right] \psi \, dx \le 0.$$

Устремляя $\eta \to 0$ отсюда получаем:

$$\int_{\Omega} [\overline{p}_1 - \rho_1^{\gamma}] \psi \, dx \le 0 \quad \forall \ \psi \in K.$$

С другой стороны (в силу выпуклости $z\mapsto z^\gamma$) — $p_1 \ge \rho_1^\gamma$ п.в. и, следовательно, имеет место равенство

$$\int_{\Omega} \left[\overline{p}_1 - \rho_1^{\gamma} \right] \psi \, dx = 0 \quad \forall \ \psi \in K. \tag{46}$$

Замечая, наконец, что произвольная функция $\psi \in L^{2\gamma}(\Omega)$ может быть представлена в виде разности двух неотрицательных п.в. функций из $L^{2\gamma}(\Omega)$ ($\psi = \psi^+ - \psi^-$) получим, что равенство вида (46) справедливо для произвольной функции ψ из $L^{2\gamma}(\Omega)$ и поэтому имеет место равенство

$$-\frac{1}{p_1} = \rho_1^{\gamma}. \tag{47}$$

Из формул (29) и (47) (в силу теоремы Рисса) вытекает, что $\rho_1^{\varepsilon} \to \rho_1$ сильно в $L^{\gamma}(\Omega)$ из чего, в свою очередь, следует

$$\rho_1^{\varepsilon} \to \rho_1$$
 сильно в $L^q(\Omega), q \in [1, 2\gamma)$. (48)

Рассмотрим теперь соотношение из (39) при i=1, j=2 , т. е.

$$\begin{split} &\lim_{\varepsilon \to 0} \int\limits_{\Omega} \tau^2 \Big[(\rho_1^{\varepsilon})^{\gamma} - (\lambda_{11} + 2\mu_{11}) div_{u_{\varepsilon}}^{\vec{-}(1)} \Big] \rho_2^{\varepsilon} \, dx = \\ &= \int\limits_{\Omega} \tau^2 \Big[- (\lambda_{11} + 2\mu_{11}) div_{u}^{\vec{-}(1)} \Big] \rho_2 \, dx \, \, \forall \, \, \tau \in C_0^{\infty}(\Omega). \end{split} \tag{49}$$

Из соотношений (9), (47) и (48) получаем: $\int\limits_{\Omega} \tau^2 (\rho_1^\varepsilon)^\gamma \, \rho_2^\varepsilon \, dx \, \to \int\limits_{\Omega} \tau^2 \rho_1^\gamma \rho_2 \, dx \, \text{ при } \varepsilon \to 0$

и поэтому в силу (49) справедлива формула

$$\lim_{\varepsilon \to 0} \int_{\Omega} \tau^{2} di v_{u \varepsilon}^{\uparrow (1)} \rho_{2}^{\varepsilon} dx =$$

$$= \int_{\Omega} \tau^{2} di v_{u}^{\uparrow (1)} \rho_{2} dx \ \forall \ \tau \in C_{0}^{\infty}(\Omega).$$
(50)

Далее, из соотношения (39) при i=2, j=2

$$\lim_{\varepsilon \to 0} \int_{\Omega} \tau^{2} \left[\frac{(\rho_{2}^{\varepsilon})^{\gamma} - (\lambda_{21} + 2\mu_{21})div_{u_{\varepsilon}}^{(1)} - }{-(\lambda_{22} + 2\mu_{22})div_{u_{\varepsilon}}^{(2)}} \right] \rho_{2}^{\varepsilon} dx = \int_{\Omega} \tau^{2} \left[\frac{p_{2} - (\lambda_{21} + 2\mu_{21})div_{u}^{(1)} - }{-(\lambda_{22} + 2\mu_{22})div_{u}^{(2)}} \right] \rho_{2} dx$$
(51)

и формулы (50) следует, что

$$\begin{split} &\lim_{\varepsilon \to 0} \int\limits_{\Omega} \tau^2 \Big[(\rho_2^{\varepsilon})^{\gamma} - (\lambda_{22} + 2\mu_{22}) div_{u\varepsilon}^{\neg(2)} \Big] \rho_2^{\varepsilon} \, dx = \\ &= \int\limits_{\Omega} \tau^2 \Big[\overline{p}_2 - (\lambda_{22} + 2\mu_{22}) div_u^{\neg(2)} \Big] \rho_2 \, dx \, \, \forall \, \, \tau \in C_0^{\infty}(\Omega). \end{split} \tag{52}$$

Из соотношения (52), дословно повторяя вывод формулы (47), получаем, что

$$\frac{}{p_2} = \rho_2^{\gamma}. \tag{53}$$

Теорема 1 доказана.

Литература

- 1. Нигматулин, Р. И. Динамика многофазных сред. Ч. 1 / Р. И. Нигматулин. М.: Наука, 1987.
- 2. Rajagopal, K. R. Mechanics of mixtures / K. R. Rajagopal, L. Tao. London: World Scientific Publishing, 1995.
- 3. Антонцев, С. Н. Краевые задачи механики неоднородных жидкостей / С. Н. Антонцев, А. В. Кажихов, В. Н. Монахов. Новосибирск: Наука, 1983.

- 4. Frehse, J. A Stokes-like system for mixtures / J. Frehse, S. Goj, J. Málek // SIAM J. Math. Anal. 2005. V. 36. № 4. P. 1259 1281.
- 5. Frehse, J. A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum / J. Frehse, S. Goj, J. Málek // J. Appl. Math. -2005. -V. 50. -N2 6. -P. 527 -541.
- 6. Frehse, J. On quasi-stationary models of mixtures of compressible fluids / J. Frehse, W. Weigant // J. Appl. Math. 2008. V. 53. № 4. P. 319 345.
- 7. Кучер, Н. А. Стационарные решения уравнений смеси вязких сжимаемых жидкостей / Н. А. Кучер, Д. А. Прокудин // Сибирский журнал индустриальной математики. -2009. Т. XII. № 3 (39). С. 52-65.
- 8. Боговский, М. Е. О решении некоторых задач векторного анализа, связанных с операторами div и grad / М. Е. Боговский // Труды семинара С. Л. Соболева. Новосибирск: Ин-т математики СО АН СССР. 1980. Т. 1. С. 5 40.
- 9. Lions, P.-L. Mathematical topics in fluid mechanics: Compressible Models / P.-L. Lions. New York: Oxford University Press, 1998.
- 10. Гилбарг, Д. Эллиптические дифференциальные уравнения с частными производными второго порядка / Д. Гилбарг, Н. Трудингер. М.: Наука, 1989.
- 11. Mucha, P. Weak solutions to equations of steady compressible heat conducting fluids / P. Mucha, M. Pokorny // J. Mathematical Models and Methods in Applied Sciences. 2010. V. 20, № 5. P. 785 813.
- 12. Солонников, В. А. Об общих краевых задачах для систем эллиптических уравнений в смысле А. Дуглиса Л. Ниренберга, II / В. А. Солонников // Труды математического института им. В. А. Стеклова. 1966. Т. XСІІ. С. 233 297.
- 13. Agmon, S. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II / S. Agmon, A. Douglis, L. Nirenberg // J. Comm. Pure Appl. Math. 1964. V. 17. P. 35 92.