УДК 544.723.2

ПРЯМОЕ КАТАЛИТИЧЕСКОЕ ВОССТАНОВЛЕНИЕ SO₂ СИНТЕЗ ГАЗОМ НА Fe-Mn ГРАНУЛИРОВАННЫХ И БЛОЧНЫХ КАТАЛИЗАТОРАХ

Н. В. Шикина, С. Р. Хайрулин, С. А. Яшник, А. А. Гаврилова, З. Р. Исмагилов

DIRECT CATALYTIC REDUCTION OF SO_2BY SYNTHESIS GASOVER GRANULATED AND MONOLITHIC Fe-Mn CATALYSTS

N. V. Shikina, S. R. Khairulin, S. A. Yashnik, A. A. Gavrilova, Z. R. Ismagilov

Работа выполнена при финансовой поддержке государства в лице Минобрнауки России в рамках реализации Федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 − 2020 годы», по Соглашению № 14.583.21.0004 о предоставлении субсидии от 16 июля 2014 г. Уникальный идентификатор научных исследований (проекта) RFMEF158314X0004.

Разработаны методы приготовления гранулированных и блочных Fe-Mn катализаторов на основе руды железомарганцевых конкреций. Исследованы текстурные, структурные и прочностные свойства катализаторов. Показано, что катализаторы характеризуются развитой пористой структурой и высокой механической прочностью.
Катализаторы испытаны в реакции DeSOx синтез-газомпри стехиометрическом соотношении $SO_2/(CO+H_2)=0,5$.
Исследовано влияние предварительного сульфидирования катализаторов, влияние геометрической формы образцов (гранулы и блок) на каталитические характеристики. Показано, что Fe-Mn катализаторы с оксидной и сульфидной формой активных компонентов активны в реакции DeSOx синтез-газом и могут селективно восстанавливать SO_2 с конверсией более 90 %.

Preparation methods of granulated and monolithic Fe-Mn catalysts on the base of ferromanganese nodules were developed. The textural, structural and strength properties of catalysts were studied. It was shown that the catalysts have a developed pore structure and high mechanical strength. The catalysts were tested in the DeSOx reaction with synthesis gas at a stoichiometric ratio $SO_2/(CO+H_2)=0.5$. The effect of the preliminary catalysts sulfidizing and geometric shape of samples (granules and monolith) on the catalytic properties were investigated. The testing showed that Fe-Mn catalysts with the oxide or sulfide form of active components are active in DeSOx reaction with synthesis gas and can selectively reduce SO_2 with a conversion above 90 %.

Ключевые слова: катализаторы, блоки, приготовление, DeSOx, синтез-газ.

Keywords: catalysts, monoliths, preparation, DeSOx, synthesis gas.

Введение

Диоксид серы, выделяемый в атмосферу, преимущественно как компонент дымовых газов тепловых электростанций, является опасным атмосферным загрязнителем, вызывающим серьезный экологический вред и проблемы здоровья [3; 4; 12]. В последнее время из-за экологических проблем и для поддержания баланса между предложением и потреблением в энергетической индустрии большое внимание исследователей во всем мире направлено на разработку чистых и эффективных энергетических технологий.

Основными направлениями снижения эмиссии SO_2 в атмосферу являются сорбционные методы [2; 6; 8; 13; 15; 18]; каталитическое окисление до триоксида серы с дальнейшим получением серной кислоты [16, 17, 21, 23]и селективное каталитическое восстановление до элементной серы [10; 11; 21]. Каждый из применяемых методов десульфуризации имеют свою технологическую нишу, а использование конкретного способа определяется исходя из множества критериев, основными из которых являются: эффективность очистки, технико-экономические показатели процесса (капитальные и текущие затраты), влияющие на себестоимость конечного продукта (для TЭЦ — стоимость выработанной тепловой и электрической энергии).

Методы каталитического восстановления диоксида серы до элементной серы с использованием различных восстановителей (СО, H_2 , CH_4 , синтез-газ) являются наиболее перспективными, поскольку обеспечивают

превращение диоксида серы в элементарную серу в одну стадию. Процесс десульфуризации синтез-газом является наиболее приемлемым для очистки высоко-концентрированных газовых смесей, поскольку ${\rm CO}$ и ${\rm H}_2$ являются компонентами дымовых газов и могут быть использованы в качестве восстановителя ${\rm SO}_2$ без дополнительных финансовых затрат.

Принципиальная реакция восстановления SO_2 смесью CO и H_2 может быть представлена как:

$$SO_2 + 2CO = [S] + 2CO_2,$$
 (1)
 $SO_2 + 2H_2 = [S] + 2H_2O$ (2)

где [S] обозначает различные состояния серы $(S_1, S_2, \dots S_8)$ в газовой фазе. По данным термодинамических расчетов наиболее вероятным является существование серы в состоянии двухатомной молекулы при температуре > 600° C [14].

Процесс СКВ SO_2 вышеперечисленными восстановителями `осуществляется на различных типах катализаторов: смесь оксидов Sn и Zr [9], сульфиды Мо и переходных металлов[19; 20], модифицированный оксид церия [7; 21; 22] и др.

Данная работа посвящена оценке возможности использования недорогих и безопасных природных материалов, содержащих оксидные и гидроксооксидные соединения переходных металлов в качестве катализаторов для процесса СКВ SO₂ синтез-газом. В связи с этим большой интерес представляют шельфовые железомарганцевые конкреции, залежи которых в больших количествах обнаружены в акваториях российских мо-

рей. Рудная составляющая конкреций на 50 % объема представлена гидроксидами и оксидами Мп и Fe сложной композиции [1]. Однако использование природных материалов для очистки дымовых газов в промышленных масштабах сопряжено с решением проблемы прочности таких катализаторов.

Целью данной работы является разработка гранулированных и блочных катализаторов на основе железомарганцевых конкреций, исследование их физикохимических свойств и активности в реакции селективного каталитического восстановления SO_2 синтезгазом.

Экспериментальная часть

Материалы

Для приготовления сорбентов SO_2 использовали порошкообразный материал «Руда железомарганцевых конкреций Финского залива» ТУ 0731-001-50855050-2005».

Приготовление катализаторов

Катализаторы в форме цилиндров и блоков сотовой структуры были приготовлены методом экструзии пластической массы, состоящей из порошка ЖМК со связующим. Для приготовления цилиндрических гранул исходные компоненты смешивали в Z-образном смесителе и затем формовали с помощью пневматического устройства через фильеру диаметром 4 мм. Влажные экструдаты разрезали на фрагменты, провяливали на воздухе в течение суток и прокаливали при 500°С в течение 4-х часов. Приготовлено 2 типа катализаторов, содержащих 80 мас.% ЖМК и 20 мас.% связующего. В качестве связующего в одном случае использовали золь гидроксида алюминия (катализатор Fe-Mn(Al), в другом случае влажную пасту Самонтмориллонита (катализатор Fe-Mn(Ca-M). Для приготовления блоков сотовой структуры была приготовлена формовочная масса, содержащая 70 мас. % ЖМК и 30 мас.% Са-М. Формование осуществляли на пневмопрессе с помощью специального формующего устройства. Сформованные блоки разрезали на фрагменты, провяливали на воздухе в течение суток, сушили при 110°С в течение 4 часов и прокаливали при 700°С (катализатор Fe-Mn(Са-М)-Бл). Фотография блочных катализаторов приведена на рис. 1.

Рис. 1. **Фотография блочных катализаторов на основе ЖМК**

Методы исследования

Исследования фазового состава

Фазовый состав образцов изучали на основании анализа дифрационной картины, полученной на дифрактометре HZG-4 с монохроматизированным $Cu\ K_{\alpha}$ излучением. Наблюдаемые фазы идентифицировали в соответствии с данными рентгенографической картотеки JCPDS.

Измерение удельной поверхности и объема пор

Пористую структуру образцов изучали методом низкотемпературной адсорбции азота на приборе ASAP-2400 ("Micromeritics", США) при температуре жидкого азота 77 К после предварительной тренировки образцов при 150°С и остаточном давлении менее 0.001 мм рт. ст. и проводили их стандартную обработку по методам БЭТ и Баррет-Джойнер-Халенда (ВЈН-метод).

Определение насыпной плотности

Для определения насыпной плотности высушенный образец помещали в мерную емкость объемом в $100~\text{cm}^3$ и уплотняли методом утряски. Затем определяли массу образца в этом объеме. Насыпную плотность (ρ), выраженную в г/см³, вычисляли по формуле: $\rho = \text{m/V}$, где m – масса навески образца, Γ ; V – объем навески образца, cm^3 .

Измерение механической прочности

Измерения механической прочности проводили на приборе МП-9С в статических условиях. Сущность метода заключается в измерении усилия разрушения, приложенного к образующей линии каждой гранулы пробы катализатора, между двумя параллельными плоскостями. Для испытаний из пробы отбирали не менее 30 гранул.

Исследование активности в реакции восстановления SO_2 синтез-газом

Для проведения экспериментов использовалась фракция катализатора размером $0.5-1.0\,\mathrm{mm}$ или фрагмент блока. Навеска катализатора объемом $1\,\mathrm{cm}^3$ помещалась в реактор. Реакционная смесь, содержащая SO_2 , CO и H_2 подавалась на вход в реактор. Устанавливались необходимые начальные концентрации реагентов, скорость потока и необходимое отношение SO_2 /синтез-газ при комнатной температуре реактора. Для экспериментов было выбрано отношение SO_2 /синтез-газ = 1/2 в соответствие с уравнениями реакций 1 и 2.

Условия проведения экспериментов по исследованию активности катализаторов в модельной реакции восстановления SO₂ синтез-газом:

Загрузка катализатора — 1 см^3 .

Объемная скорость – 1200 ч⁻¹

Исходная концентрация $SO_2 - 67$ об.%.

Отношение SO_2 /синтез-газ = $\frac{1}{2}$.

Состав синтез-газа: 25% СО + 75 %.

Диапазон температур – 200 – 600 °C.

Контроль за концентрациями SO_2 , CO и H_2 осуществлялся путем измерения концентраций веществ с помощью газового хроматографа.

Обработка экспериментальных данных

На основании полученных экспериментально значений концентраций реагентов и продуктов реакции проводился расчет степени превращения SO₂, синтезгаза, CO и H₂, селективности в отношении к образо-

ванию элементной серы, сероводорода и COS, а также выходов элементной серы, сероводорода, COS.

Поскольку реакция протекает с изменением объема, расчет степеней превращения и выходов производился через объемные расходы компонентов до реактора и после. Значения объемных расходов компонентов реакции вычислялись на основании экспериментальных данных о суммарном расходе и составе газовой смеси после реактора.

Результаты

Свойства катализаторов

Основные физико-химические характеристики катализаторов: насыпная плотность $\rho_{\text{нас}}$, удельная поверхность (S_{BET}) , объем пор (V_{pore}) , влагоемкость (V_{Σ}) , диаметр пор (D), механическая прочность (P),фазовый состав приведены в таблице.

Таблица

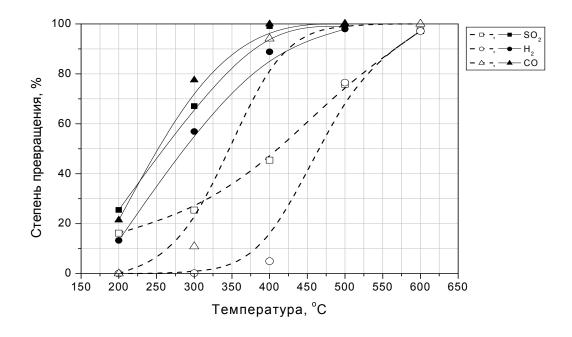
Физико-химические свойства катализаторов на основе ЖМК

Образец	$\rho_{\scriptscriptstyle Hac}$	S_{BET} ,	V_{pore}	V _z no	D, Å	Р,	Фазовый состав
	г/см ³	$M^2/2$	см ³ /г	H_2O , см ³ /г		кг/см²	
Fe-	0.63	87	0.32	0.53	157	9.0	α-SiO ₂ ;
Mn(Al)							высокодисперсный гематит – Fe ₂ O ₃ ;
							неидентиф. фазы Ф1 с максимумами
							на 25.5 и32.45 град и Ф2 с максиму-
							мом на 31.95 град;
Fe-	0.77	37	0.13	0.23	132	30.0	α -SiO ₂ ;
Mn(Ca-							высокодисперсный гематит –Fe ₂ O ₃ ;
M)							Са-монтмориллонит;
							неидентиф. фазы Ф1 с максимумами
							на 25.5 и32.45 град и Ф2 с максиму-
							мом на 31.95 град;
Fe-	не	19	0.12	0.23	251	27.6 (по	α -SiO ₂ ;
Mn(Ca-	оп-					образу-	Са-монтмориллонит;
М)-Бл	ред.					ющей)	неидентиф. фаза Ф1 с максимумами
							на 25.5 и32.45 град;
							неидент. фаза Ф2 с максимумом на
							31.95 град;
							грубодисперсный гематит –Fe ₂ O ₃

Показатели пористой структуры катализаторов имеют наиболее важное значение для эффективного проведения процесса, т. к. определяют дисперсность активных компонентов на поверхности и обеспечивают доступ реактантов к активным центрам. Использование гидроксида алюминия в качестве связующего для приготовления катализатора позволяет получить образец Fe-Mn(Al) с высокой удельной поверхностью и развитой пористой структурой. При этом удельная поверхность и влагоемкость образца Fe-Mn(Al) имеют близкие значения с характеристиками исходного порошка ЖМК, прокаленного при 500°C, а по показателям объема пор даже превосходит исходный материал [5].Катализатор Fe-Mn(Са-М), приготовленный с использованием Са-монтмориллонита в качестве связующего, уступает по текстурным показателям катализатору Fe-Mn(Al), но при этом характеризуется более высокой механической прочностью. Блочный катализатор сотовой структуры Fe-Mn(Ca-M)-Бл имеет приблизительно одинаковый химический и фазовый состав с катализатором Fe-Mn(Ca-M), но вследствие прокаливания при более высокой температуре уступает ему по показателям удельной поверхности из-за спекания тонких пор. При этом значения объема пор и влагоемкости этих катализаторов идентичны. Выбранная температура прокаливания блочного образца является компромиссным вариантом, обеспечивающим катализатору достаточно хорошие показатели удельной поверхности, пористой структуры и механической прочности.

Фазовый состав приготовленных катализаторов определяется химическим составом образцов и температурой прокаливания. Дифракционные картины образцов различаются из-за присутствия фаз связующих различной природы. Фаза гематита, присутствующая во всех образцах, характеризуется различной дисперсностью, которая ниже в образце блока, прокаленного при 700°С.

Восстановление SO_2 синтез-газом


На катализаторах Fe-Mn(Al) и Fe-Mn(Ca-M) была исследована зависимость каталитической активности отфазового состояния активного компонента. Катализаторы испытывались после прокаливания на воздухе при 500°С (оксидная форма) и после сульфидирования в атмосфере сероводорода при 400°С в течение 2 часов (сульфидная форма). Блочные катализаторы в виде фрагментов блока диаметром 10 мм, высотой 20 мм с толщиной стенки 0,5 мм испытывались в сульфидной форме.

Каталитические характеристики (конверсия SO_2 , CO и H_2 и выход основных продуктов реакции) образцов Fe-Mn(Al) и Fe-Mn(Ca-M) в оксидной и сульфидной форме приведены на рисунках 2 и 3. Характер каталитических характеристик в восстановлении ди-

оксида серы синтез-газом оксидных образцов Fe-Mn(Al) и Fe-Mn(Ca-M) идентичен в области температур выше $400\,^{\circ}$ С. Конверсия SO_2 составляла $75\,^{\circ}$ % при $500\,^{\circ}$ С и $95-98\,^{\circ}$ % при $600\,^{\circ}$ С, выход серы $-70-72\,^{\circ}$ 0 и $94\,^{\circ}$ %, соответственно. В области температур до $400\,^{\circ}$ С, несколько более активным был образец Fe-Mn(Al). Уже при температуре $300\,^{\circ}$ С, указанный образец обеспечивал конверсию SO_2 и выход серы на уровне $25\,^{\circ}$ %. Более высокая активность образца может быть следствием его более высокой удельной поверхности, по сравнению с образцом Fe-Mn(Ca-M). При температуре $400\,^{\circ}$ С на обоих образцах наблюдалось образование COS, с выходом до $10-12\,^{\circ}$ %.

Предварительное сульфидирование приводит к существенному улучшению каталитических характе-

ристик обоих образцов. Наблюдается смещение всех измеряемых каталитических характеристик в низкотемпературную область, за исключением точки $200\,^{\circ}$ C. Так, если сульфидированный катализатор FeMn(Al) обеспечивает75 %-ную конверсию диоксида серы уже при $300\,^{\circ}$ C, то для достижения такой же конверсии SO_2 на оксидном катализаторе требуется температура $470\,^{\circ}$ C. Можно полагать, что поверхность оксидного катализатора также сульфидируется в условиях реакции, однако недостаток сероводорода затрудняет процесс сульфидирования, что приводит к сдвигу каталитической активности в высокотемпературную область.

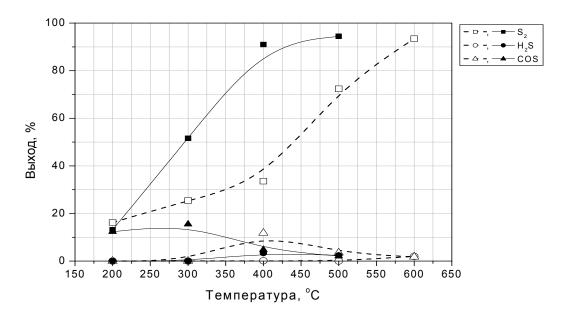
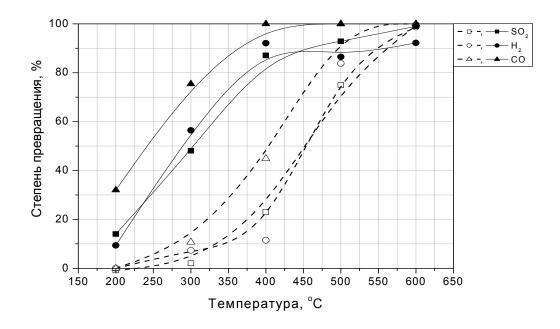
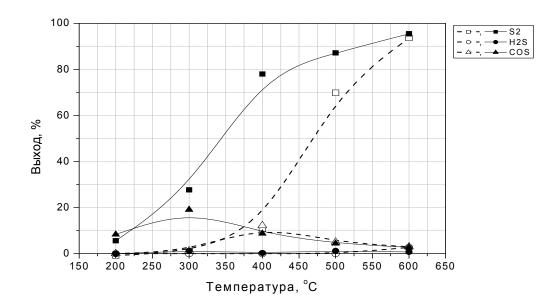
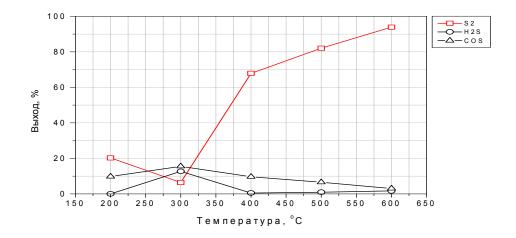
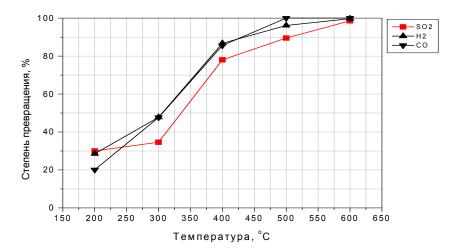



Рис. 2. Влияние предварительного сульфидирования на каталитические характеристики образца Fe-Mn(Al) в реакции восстановления диоксида серы синтез-газом

Открытые символы – образец в оксидной форме, закрытые символы – образец в сульфидной форме (в токе H_2S при $400^{\circ}C$, 2 ч).


Рис. 3. Влияние предварительного сульфидирования на каталитические характеристики образца Fe-Mn(Ca-M) в реакции восстановления диоксида серы синтез-газом

Открытые символы – образец в оксидной форме, закрытые символы – образец в сульфидной форме (в токе $\rm H_2S$ при 400 $^{\rm o}$ C, 2 ч).

На рис. 4 приведены результаты испытаний сульфидированного блочного катализатора Fe-Mn(Ca-M)-Бл. Каталитические характеристики этого образца

сравнивались с характеристиками сульфидированного гранулированного катализатора Fe-Mn(Ca-M), приготовленного в виде фракции. Установлено, что по каталитическим характеристикам (конверсия SO_2 и выход продуктов) блочный катализатор не уступает гранулированному катализатору аналогичного состава.

Puc.~4. Активность в восстановлении SO_2 синтез-газом сульфидированного блочного образца Fe-Mn(Ca-M)-Бл. GSHV-1200 ч $^{-1}$. $SO_2/(CO+H_2)=0.5$. Загрузка образца -1 см 3

Литература

- 1. Иванова А. М., Смирнов А. Н., Рогов В. С., Мотов А. П., Никольская Н. С., Пальшин К. В. Шельфовые железомарганцевые конкреции новый вид минерального сырья // Минеральные ресурсы России. 2006. № 6. С. 14.
- 2. Исмагилов 3. Р., Керженцев М. А. Экологически чистое сжигание топлив и каталитическая очистка дымовых газов ТЭС от оксидов азота: состояние и перспективы // Ж. Всес. хим. о-ва им. Д. И. Менделеева. 1990. Т. 35. № 1. С. 43 54.
- 3. Исмагилов 3. Р., Керженцев М. А., Хайрулин С. Р. Каталитическая очистка геотермального пара от сероводорода // Химия в интересах устойчивого развития.1999. Т. 7. № 4. С. 443 449.
- 4. Исмагилов З. Р., Керженцев М. А., Хайрулин С. Р., Кузнецов В. В. Одностадийные каталитические методы очистки кислых газов от сероводорода // Химия в интересах устойчивого развития. 1999. Т. 7. № 4. С. 375 396.
- 5. Шикина Н. В., Хайрулин С. Р., Кузнецов В. В., Исмагилов З. Р. Разработка и исследование адсорбентов на основе рудных материалов для очистки дымовых газов ТЭС от диоксида серы // Химия в интересах устойчивого развития. 2015. № 23. С. 199 208.
- 6. Dou B., Pan W., Jin Q., Wanga W., Li Y. Prediction of SO₂ removal efficiency for wet Flue Gas Desulfurization // Energy Convers. Manage. 2009. Vol. 50. P. 2547 2553.
- 7. Flytzani-Stephanopoulos M., Zhu T., Li Yu. Ceria based catalysts for the recovery of elemental sulfur from SO_2 -laden gas streams // Catal. Today. 2000. Vol. 62. P. 145 158.
- 8. Gomez A., Fueyo N., Tomas A. Detailed modelling of a flue-gas desulfurization plant // Comput. Chem. Eng. 2007. Vol. 31. P. 1419 1431.
- 9. Han G. B., Park N-K., Lee J. D., Ryu S. O., Lee T. J. A study on the characteristics of the SO_2 reduction using coal gas over SnO_2 - ZrO_2 catalysts // Catal. Today. 2006. Vol. 111. P. 205 211.
- 10. Han G. B., Park N. K., Yoon S. H., Lee T. J. Catalytic reduction of sulfur dioxide with carbon monoxide over tin dioxide for direct sulfur recovery process // Chemosphere. 2008. Vol. 72. P. 1744 1750.

- 11. Han G. B., Park N. K., Yoon S. H., Lee T. J., Yoon K. J. Synergistic catalysis effect in SO_2 reduction by CO over Sn-Zr-based catalysts // Applied Catalysis A: General. 2008. Vol. 337. P. 29 38.
- 12. Ismagilov Z. R., Kerzhentsev M. A. Catalytic fuel combustion away of reducing emission of nitrogen-oxides // Catal. Rev. Scie. Eng. 1990.Vol. 32. № 1–2. P. 51 103.
- 13. Kallinikos L. E., Farsari E. I., Spartinos D. N., Papayannakos N. G. Simulation of the operation of an industrial wet flue gas desulfurization system // Fuel Process. Technol. 2010. Vol. 91. № 12. P. 1794 1802.
- 14. Kaloidas V. E., Papayannakos N. G. Hydrogen production from the decomposition of hydrogen sulphide. Equilibrium studies on the system $H_2S/H_2/Si$, (i = 1,...,8) in the gas phase // Int. J. Hydrogen Energy. 1987. Vol. 12. P. 403 409.
- 15. Kameda T., Kodama A., Yoshioka T. Simultaneous removal of SO₂ and NO₂ using a Mg-Al oxide slurry treatment // Chemosphere. 2013.Vol. 93. P. 2889 2893.
- 16. King M. J., Davenport W. G., Moats M. S. Wet sulfuric acid process fundamentals // Sulfuric Acid Manufacture (Second Edition). Analysis, Control and Optimization. Copyright © 2013 Elsevier Ltd. P. 295 311.
- 17. Koutsopoulos S., Rasmussen S. B., Eriksen K. M., Fehrmann R. The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts// Appl. Catal. A: General. 2006. Vol. 306. P. 142 148.
- 18. Scala F., Solimene R., Montagnaro F. Conversion of solid fuels and sorbents in fluidized bed combustion and gasification // Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification. 2013. P. 319 387.
- 19. Wiltowski T. S., Sangster K., O'Brien W. S. Catalytic reduction of SO₂ with methane over molybdenum catalyst // J. Chem. Tech. Biotech. 1996. Vol. 67. № 2. P. 204 212.
- 20. Zhang X., Hayward D. O., Lee C., Mingos D. M. P. Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS₂ catalysts // Appl. Catal. B: Environmental. 2001. Vol. 33. P. 137 148.
- 21. Zhu T., Dreher A., Flytzani-Stephanopoulos M. Direct reduction of SO₂ to elemental sulfur by methane over ceria-based catalysts // Appl. Catal. B: Environmental. 1999. Vol. 21. P. 103 120.
- 22. Zhu T., Kundakovic L., Dreher A., Flytzani-Stephanopoulos M. Redox chemistry over CeO₂-based catalysts: SO₂ reduction by CO or CH₄ // Catal. Today. 1999. Vol. 50. P. 381 397.
- 23. Xiao Y., Liu Q., Liu Zh., Huang Zh., Guo Y., Yang J. Roles of lattice oxygen in V₂O₅ and activated coke in SO₂ removal over coke-supported V₂O₅ catalysts // Appl. Catal. B: Environmental. 2008. Vol. 82. P. 114 119.

Информация об авторах:

Шикина Надежда Васильевна – ведущий инженер Института катализа им. Г. К. Борескова СО РАН (ИК СО РАН), г. Новосибирск, shikina@catalysis.ru.

Nadezhda V. Shikina – leading engineer at Boreskov Institute of Catalysis of SBRAS, Novosibirsk.

Хайрулин Сергей Рифович — кандидат химических наук, старший научный сотрудник Института катализа им. Г. К. Борескова СО РАН (ИК СО РАН), г. Новосибирск, sergk@catalysis.ru.

Sergey R. Khairulin - Candidate of Chemistry, Senior Research Associate at Boreskov Institute of Catalysis of SBRAS, Novosibirsk.

Яшник Светлана Анатольевна — кандидат химических наук, старший научный сотрудник Института катализа им. Г. К. Борескова СО РАН (ИК СО РАН), г. Новосибирск, yashnik@catalysis.ru.

Svetlana A. Yashnik – Candidate of Chemistry, Senior Research Associate at Boreskov Institute of Catalysis of SBRAS, Novosibirsk.

Гаврилова Анна Алексеевна — инженер Института катализа им. Г. К. Борескова СО РАН (ИК СО РАН), г. Новосибирск, gavraa@catalysis.ru.

Anna A. Gavrilova – engineer at Boreskov Institute of Catalysis of SBRAS, Novosibirsk.

Исмагилов Зинфер Ришатович – член-корреспондент РАН, директор Института углехимии и химического материаловедения СО РАН (ИУХМ СО РАН), г. Кемерово, заведующий Лабораторией экологического катализа Института катализа им. Г. К. Борескова СО РАН (ИК СО РАН), г. Новосибирск.zinferl@mail.ru

Zinfer R. Ismagilov – corresponding member of the Academy of Sciences of Russia, Director of the Institute of Coal Chemistry and Material Science of SB RAS, Kemerovo; Head of the Laboratory of Environmental Catalysis, Boreskov Institute of Catalysis of SBRAS, Novosibirsk.

Статья поступила в редколлегию 21.09.2015 г.