УДК 546.11:539.23:538.913

ИССЛЕДОВАНИЕ НАНОКОМПОЗИЦИОННОЙ СТРУКТУРЫ ПИРОНИТРИДА БОРА ПРИ ПРОТОННОМ ОБЛУЧЕНИИ

Ю. В. Бородин, В. Х. Пак, С. В. Романенко

INVESTIGATION OF THE BORIUM PYRONITRIDE NANOCOMPOSITE STRUCTURE IN PROTON IRRADIATION

Yu. V. Borodin, V. Kh. Pak, S. V. Romanenko

В статье исследована нанокомпозиционная структура пиронитрид бора (ПНБ) при облучении наносекундными протонно-ионными пучками с энергией $120-250~{\rm K}{\rm sB}$, плотностью тока до $80{\rm A/cm}^2$ и длительностью $20-100~{\rm hc}$. Показано, что облучение наносекундными протонно-ионными пучками с высокой плотностью мощности способствует росту вюрцитоподобного ПНБ на основе самоорганизующихся спирально циклических нанокомпозиционных структур из первичной структуры протонно-выделенных нанополимеров.

The paper investigated the nanocomposite structure pironitrid boron (PNB) irradiated by nanosecond proton-ion beams with energies of 120 - 250 keV, current density and duration to 80A/sm² 20 - 100 ns. Shown that irradiation of nanosecond proton-ion beams with high power density contributes vyurtsitopodobnogo NSP based on self.

Ключевые слова: нанокоппозиционная структура, самоорганизация, протонирование.

Keywords: nanocomposite structure, self-organization, protonation.

Облучение кристаллов простых веществ и соединений наносекундными протонно-ионными пучками с высокой плотностью мощности приводит, как правило, к приповерхностному модифицированию материалов и протонному выделению первичной структуры нанополимеров (ПСНП) [1 - 3]. Высокий уровень сопутствующего протонирования чаще всего наблюдается в плотноупакованных и слоистых материалах. К числу таких материалов относится пиронитрид бора с большим количеством плотноупакованных плоскостей, где интенсивные структурные преобразования происходят при низких температурах [4, с. 227 - 237; 5, с. 297 - 304]. Формирование в таких условиях сверхтвердых фаз улучшает механические и диэлектрические свойства ПНБ, способствует созданию инструментальных материалов и изделий с высокой радиационной стойкостью [6, с. 98 – 104; 7, с. 165 – 170]. Исследования тонкой кристаллической структуры и текстуры различных модификации ПНБ не привели к объяснению природы ПСНП и нанополимеров из ПСНП. Нанокомпозиционная структура чаще всего формируется при ударно-волновых и наносекундных воздействиях, обработке в расплавах солей и кислот, где обеспечивается высокий уровень протонирования, регулирование размеров ПСНП и соблюдение принципов самоподобия [8, с. 475 – 487]. Представляется необходимым исследование влияния наносекундного протонного облучения на форму и размеры ПСНП, нанополимеров и низкотемпературные структурные преобразования.

Методика эксперимента

Исследованы пластины коммерческого ПНБ. Облучение велось пучками протонов с энергией 120 - 250 КэВ, плотностью тока до 80A/cм² и длительностью 20 – 100 нс с ограничивающим зону облучения (Ø 3 мм) экраном из фольги W толщиной 0,5 мм. Рентгеновские исследования проводили на дифрактометре ДРОН-3 в Си-К_в -излучении. Для восстановления тонкой структуры подрефлексов использована методика съемки несфокусированных лауэграмм, когда образец смещается из центра гониометра в сторону рентгеновского источника, и дифракционная картина наблюдалась от неподвижного образца как при съемке лауэграмм. При рентметодике генографических исследованиях по Шольца также использовался метод расфокусировки изображения [9, с. 499 - 501]. Микроскопические исследования проводили на электронном микроскопе ЭМ-125К; изображение, позволяющее судить о фазовом составе, получали с области 0,5 – 1,0 мкм.

Результаты исследования

В исходном ПНБ и облученном наносекундными протонными пучками ($E=120~{\rm K}{\rm yB}$, $I=10~{\rm A/cm}^2$; $t=20{\text -}100{\rm hc}$ с, $T=15~{\rm имп./мин}$) наблюдается сложная иерархия распределения интегральной интенсивности дифракционных линяй, что свидетельствует о сложности распределения электронной плотности в атомных плоскостях (рис. 1).

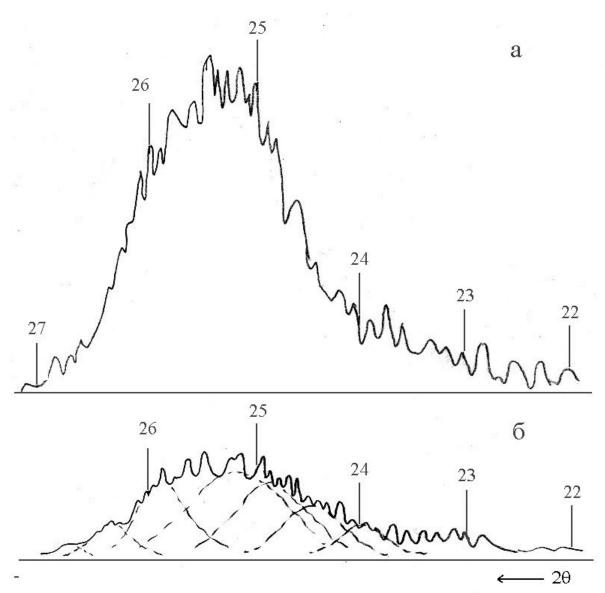


Рис. 1. Тонкая структура дифракционного рефлекса (002) исходного (а) и облученного (б) ПНБ

Неравномерность электронной плотности можно связать с перераспределением старых и формированием новых нанополимеров.

Каждый рефлекс разбивался на семь и более крупных подрефлексов, расположенных апериодически внутри большого рефлекса. Исходя из геометрии, расположения субподрефлексов и рефлексов зависимости распределения межугловых положений имеют соответственно вид [10]:

$$\Delta \varphi_0 \ \tau^0, \Delta \varphi_0 \ \tau^1, \Delta \varphi_0 \ \tau^2; \tag{1}$$

$$\Delta \varphi_0 \tau^0, \Delta \varphi_0 \tau^1, \Delta \varphi_0 (1/2\tau^2), \Delta \varphi_0 (1/3\tau^2),$$
 (2)

где $\Delta \phi_0$ – минимальное межугловое расстояние,

 $\tau = 1,618$ — число золотого сечения.

С учетом выражений (1) и (2) в табл. 1 представлены экспериментальные значения микроблоков вдоль плоскостей [110] и [001]. Используя экспериментально найденную величину межплоскостного

расстояния наиболее плотноупакованной плоскости с максимальной интенсивностью линии (d_{max}) , размер ребра ПСНП находился из выражения [10]:

$$d_{\Pi C H \Pi} = d_{max} N^{1/2} \tau^{1/6} K_{\varphi}^{-1/3} \ , \eqno(3)$$

где $N = H^2 + K^2 + L^2 - сумма квадратов индексов наиболее плотно упакованной плоскости; <math>K_{\varphi}$ – коэффициент формы ПСНП ($K_{\text{куб}} = 1$; $K_{\text{октаэдр}} = 0,4714$; $K_{\text{тетраэдо}} = 0,1179$).

Расчетные значения нанополимеров получены исходя из принятых в [9, с. 499-501] положений о составляющих их ПСНП и масштабировании размеров ребер ПСНП согласно последовательности Фибоначчи. Из табл. 1 видно, что при использовании ПСНП октаэдрической формы с a=0,455 нм часть нанополимеров по размерам близки к расчетным. Вдоль плоскости [001] при облучении формируются более крупные нанополимеры, часть из которых находится в иерархических цепочках 5-6-7 с самоподобными переходами [8, с. 475-487]. Реализации таких переходов препятствуют экспериментально

наблюдаемые нанополимеры с размерами 3,1; 3,94; 4,25 и 11,56 нм. С помощью методики топографической съемки по Шольцу наблюдается распределение

правильным образом расположенных блоков размерами $10-20\,\mathrm{mkm}$.

Таблица 1

Размеры нанополимеров в ПНБ после облучения

Плоскость	110			001		
$a_{ m экспер.}$, НМ	1,37	2,614	9,596	3,66	6,40	11,56
Шаг ряда Фибоначчи	3	4	7	5	6	7
$a_{\rm pacu.}$, HM	1,365	2,275	9,555	3,64	5,915	9,555

Облучение ПНБ наносекундными пучками провысокой плотностью тонов мошности $(E = 120 \text{ K}_{2}B, I = 80\text{A/cm}^{2}, t = 100\text{Hc},$ Т = 15имп./мин.) сопровождается формированием новой вюрицитоподобной (ВN_в) фазы. Зависимость объемной доли В N_в имеет выраженные провалы, соответствующие глубинам 1,6; 3,2; 4,8 и 7,9 мкм. Изменения структуры наблюдаются также на расстоянии до 15 мм под защитным экраном от зоны облучения. Низкотемпературное превращение ВN_г→ВN_в связано с уменьшением длины ребра ПСНП на $\Delta a = 0,009$ нм и, по-видимому, связано со сдвиговыми деформациями слоев.

Электронно-микроскопические исследования подтверждают образование $BN_{\scriptscriptstyle B}$ на достаточном удалении от зоны облучения и изменение распределения сфероидальных образований $BN_{\scriptscriptstyle B}$ по глубине (рис. 2).

В табл. 2 представлены соотношения размеров включений и плотность их распределения по образцу и в дали от зоны облучения. На глубине 0,2 мкм и при удалении на 15 мм от зоны облучения сфероидальные образования измельчаются и доля их снижается до 45 %. На глубине ~50 мкм наблюдаются фрагменты BN_в с симметрией пятого порядка в виде пентагонов размерами до 32 нм, переходящими на глубине ~500 мкм в образования типа звездочек размерами до 62,5 нм (рис. 3). Экспериментально наблюдаемые звездочки и пентагоны в BN_в связаны с особенностями процессов самоорганизации спиральных циклических структур [6, с. 98 – 104]. На рис. 3 показана укладка нанополимеров (светлых блоков) самоорганизующейся структуры в области локальной оси симметрии пятого порядка с образованием пентагонов и звездочек в точке выхода оси L₅ [5, c. 297 – 304, 10].

Таблица 2 Расположение сфероподобных включений в ПНБ при протонном облучении

Параметры	Иомодиней	Удаление от зоны облучения (мм)				
включений	Исходный	0	10	15		
Размер, d, нм	8,4	82	64,5	6,6		
$d_{max} (d_{min})$	600(37,5)	250(37,5)	87,5(50)	87,5(50)		
Объемная доля, ΔV , %	~100	35-45	3-5	≤1,0		

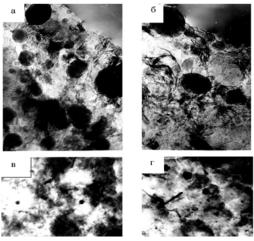


Рис. 2. Электронно-микроскопические снимки ПНБ после облучения на глубине (мкм): θ -(a, δ); 5θ (ϵ); 50θ (ϵ); N = 1000 ит.; $I = 10 \ A/cm^2$, $\tau = 100$ нс (a); N = 3 ит.; $I = 80 \ A/cm^2$, $\tau = 20$ нс (ϵ , ϵ); x = 8000

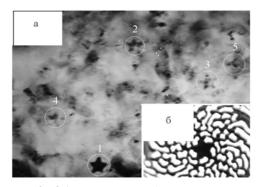


Рис. 3. Образование звездочек в точках выхода оси L_5 на электронномикроскопических снимках ПНБ (а) и при укладе светлых блоков в самоорганизующейся структуре (б);

1, 2, 3, 4, 5 – разные уровни проявления звездочек

Выводы

- 1. Изучена нанокомпозиционная структура различных модификаций ПНБ при наносекундном протонном облучении и показано, что при низких температурах происходит сдвиговый фазовый переход $BN_r \rightarrow BN_R$.
- 2. На примере плотноупакованного слоистого ПНБ экспериментально подтверждается протонный механизм выделения структурных элементов и нанополимеров из них.
- 3. Электронно-микроскопическими исследованиями показана возможность формирования фрагментов с симметрией пятого порядка с самоорганизующейся структурой $BN_{\rm B}$.

Литература

- 1. Popp, D. Surface modification by intense proton irradiation / D. Popp, A. Mehling, R. et. al. Wilzbach // Appl. Phys. A. -1992. V. 55. N = 6.
- 2. Piekoszewski, I. High intensitty pulsed ion beams in material: equipment and applications / I. Piekoszewski, I. Langner // Nucl. Instrum. and Meth. Phys. Res. B. -1991.-V.53.-N 2.
- 3. Zheng, X. M. The topologies of the chean and hydrogen terminated C (100) surface / X. M. Zheng, P. V. Smith // Surface Sci. 1991. V. 256. № 1 2.
- 4. Turan, S. Hith resolution transmission electron microscopy of the planar defect structure of hexagonal

- boron nitrid / S. Turan, K. M. Knowles // Phys. Status Solisi. A. 1995. V. 150. № 1.
- 5. Дедков, В. И. Надкристаллитные квазикристаллические образования в нитриде бора / В. И. Дедков, Ю. Ф. Иванов // Физ. тв. тела (СПб). 1995. Т. 37. № 2.
- 6. Barhart, F. The formation of curled concentric shell clusters in boron hitride under electron irradiation / F. Barhart, M. Zwanger // Chem. Phys. Lett. 1994. V. 231. № 1.
- 7. Кабышев, А. В. Электрофизические свойства поликристаллического сфалеритного нитрида бора / А. В. Кабышев, Ф. В. Конусов, В. В. Лопатин и др. // Изв. РАН. Сер. Неорган. материалы. 1996. Т. 32. N 2.
- 8. Odagaci, T. Self-similarities in onedimensional periodic and quasiperiodic systems / T. Odagaci, H. Aoyma // Phys. Rev. B. − 1989. − V. 39. − № 1.
- 9. Сергеев, А. Н. Геометрическое моделирование структуры сверхпластичной конструкционной керамики / А. Н. Сергеев, С. В. Руднев, В. Г. Бамбуров и др. // Докл. АН СССР. 1995. Т. 341. № 4.
- 10. Бородин, Ю. В. Нанокомпозиционные структуры в тонком слое / Ю. В. Бородин, М. Э. Гусельников, А. Н. Сергеев. Томск: Изд. ТПУ, 2007. –